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Abstract—Identifying system use cases and corresponding 

validations involves analyzing large requirement documents to 

understand the descriptions of business processes, rules and 

policies. This consumes a significant amount of effort and time.  

We discuss an approach to automate the detection of system use 

cases and corresponding validations from documents. We have 

devised a representation that allows for capturing the essence of 

rule statements as a composition of atomic ‘Rule intents’ and key 

phrases associated with the intents. Rule intents that co-occur 

frequently constitute 'Rule acts’ analogous to the Speech acts in 

Linguistics. Our approach is based on NLP techniques designed 

around this Rule Model. We employ syntactic and semantic NL 

analyses around the model to identify and classify rules and 

annotate them with Rule acts. We map the Rule acts to business 

process steps and highlight the combinations as potential system 

use cases and validations for human supervision. 

Index Terms—Requirement documents, System use cases, 

validations, NL analyses, Rules, Rule types, Rule acts, Rule intents. 

I. INTRODUCTION 

In typical distributed development scenarios, requirement 

documents are written in consultation with the clients and are 

handed over to offshore teams of analysts and developers.   

Oftentimes, outsourcing is a multi-vendor process in which 

Software Engineering activities are distributed; - requirements 

are prepared by one vendor and implemented by another. The 

documents need to be studied and analyzed before the 

implementation can begin. Large IT vendors generate an 

enormous amount of documented knowledge in a given 

business domain as a result of executing thousands of projects 

over the years. Project managers always hope to reuse this 

knowledge in the next new project in the same domain, but 

their teams are swamped by the task of having to read the 

available documents to identify useful pieces of knowledge. In 

large projects spanning over a few years, teams keep changing 

and new developers take over from their old counterparts. The 

task of having to read and infer from the project documents is a 

daunting one for the newcomers.  

The scenarios highlight the need for automating the process 

of detecting and extracting knowledge elements from existing 

documents.  

In this paper, we focus on two of the crucial knowledge 

elements – (1) System use cases based on business process step 

descriptions, and (2) Validations corresponding to business 

rules, and policies. System use cases take into account the 

design scope so that users can achieve their goals using the 

system [1].  A comprehensive set of system use cases therefore 

enhances the chances of meeting users’ requirements.  

Identifying system use cases and corresponding validations 

involves analyzing large requirement documents to understand 

the descriptions of business processes, rules and policies of a 

client’s organization. This activity consumes a significant 

amount of effort and time. We discuss an approach to automate 

the detection of system use cases and corresponding validations 

from documents.  

For this purpose, we studied a sample from 500 requirement 

documents from 20 large projects aimed at developing 

Insurance systems. The documents contained descriptions of 

business processes, rules and policies of clients. We found that 

(1) the rule statements are oftentimes embedded in process 

descriptions, and (2) the rule statements that practitioners write 

are typically compound and complex sentences. Each statement 

contains several (intended) constraints which we term ‘Rule 

intents’ [2]. Based on our analysis of the documents, we arrived 

at a representation that allows for capturing the essence of rule 

statements in terms of the atomic Rule intents.  

Each rule statement can be represented as a composition of 

Rule intents. We store the Rule intents and associated key 

phrases in a database. We then run an agglomerative clustering 

algorithm [3] over the rule statements to detect the Rule intents 

that co-occur most frequently. The groups of frequently co-

occurring intents are manually inspected to name the ‘Rule 

acts.’ Analogous to the Speech acts [4, 5] in Linguistics that 

express apology, gratitude, and request, the Rule acts explicate 

system validations such as access control, data validation, and 

conditional execution. The Rule acts we identified from the 

document sample are sub-classes of the rule types that Ross 

defines [6, 12].  

The requirement documents are written by practitioners and 

are intended for developers who implement the system. 

Therefore the rule statements in the documents are far more 

fine-grained than what can be described in terms of Ross’s rule 

types. Hence the need to define Rule acts as sub-classes of the 

types defined in [6, 12]. Our approach is based on NLP 

techniques designed around this Rule Model. We provide a 

framework for detecting system use cases and corresponding 

validations as follows: We employ syntactic and semantic NL 



analyses around the Rule Model to (1) identify and classify 

rules, (2) annotate them with Rule acts, and (3) recommend 

their possible mappings to business process steps. The process 

steps together with associated Rule acts make for a set of 

system use cases and validations to be implemented by 

developers.  

The rest of the paper is organized as follows: In section II, 

we discuss the details of the Rule Model. Section III presents 

details of the method for an automated extraction and 

classification of rules. In Section IV, we discuss our early 

results on detecting system use cases and validations. Section V 

is a review of related work and Section VI presents conclusions 

and future work. 

II. RULE MODEL 

In this section, we define the key concepts and describe the 

method of training the dataset for detecting system use cases 

and validations.  

We selected 20 documents from a population of 500 

documents using the stratified sampling technique [7]. The 

documents are from 20 large projects in the Insurance domain. 

We performed a manual content analysis on the stratified 

sample. We had four coders who studied the requirement 

documents, each analyzing 5 documents. We use the following 

definitions in the description of our manual content analysis 

and in the discussions subsequently.  

A.  Definitions 

Rule intent is defined as an atomic constraint embedded in 

a natural language rule statement which is usually a compound 

sentence. For example : A rule such as “In Europe, you need to 

be above 18 to get a driving license” has 3 Rule intents – (1) 

Geographical boundary – In Europe, (2) Threshold – need to be 

above 18 and (3) Activity – get a driving license. We observe 

from our manual analysis of documents that any rule statement 

is composed of one or more Rule intents. 

Rule intent patterns are syntactic representations of 

phrases and keywords associated with Rule intents in a rule 

statement. The Rule intent pattern is a combination of Parts of 

Speech (POS) tags [8], keywords and wild card characters 

(‘*’, ‘+’, ‘.’) where ‘*’ represents a frequency of 0 or more 

occurrences of words, ‘+’ represents a frequency of 1 or more 

occurrences of words and ‘.’ represents exactly 1 occurrence 

of a word.  

For example, consider the following sentence: 

For the Family plan, the loss-claim should be submitted within 

90 days from the date of the incident. 

The sentence is decomposed into the following four parts 

based on the Rule intents it contains. Using the keywords and 

POS tags, Rule intent patterns are then created for each part. 

These patterns are stored in a database along with the 

corresponding Rule intents. 

1. For/IN the/DT Family/NNP plan/NN, (intent: Information 

Type;  pattern: + NNP * plan *) 

2. ,/,the/DT loss-claim/NN should/MD be/VB 

submitted/VBN (intent: Activity;  pattern: * claim + MD 

VB + VBN *) 

3. within/IN 90/CD days (intent: Temporal Check;  pattern: 

* within CD days *) 

4. from/IN the/DT date/NN of/IN the/DT incident/NN  

(intent: Threshold;  pattern: * from + date of +) 

Rule acts are composed of frequently co-occurring Rule 

intents. As explained earlier, they explicate validations such as 

access control, data validation, and conditional execution 

which upon implementation, will conform to the corresponding 

relevant rules. The Rule acts are sub-classes of the rule types 

that Ross defines [12]. 

Fig.1 shows the Rule Model elements and their associations 

using the UML class diagram notation.  We  use  this  model  

to extract, classify and annotate rules with rule acts and map 

them with  process  step  descriptions that  contain the key  

phrases in the  rule  intent  patterns.  The  process  steps  

together  with associated  rule  acts  make  for  a  set  of  system  

use  cases  and validations  to  be  implemented.  We describe 

the method of detection in Section III. 

 

 
Fig.1 Rule elements and their associations 

B. Manual Content Analysis  

In order to facilitate reconciliation of analysis by 4 different 

coders, we prepared a coding guide based on our pilot 

iteration. The guide contains criteria for (1) identifying a rule 

statement using the basic definition [6, 12], and (2) identifying 

the Rule intents and patterns according to the definitions 

above. The sets are then exchanged by the coders and a second 

iteration is performed. They may also identify additional 

statements as business rules if they can rationalize their 

decision based on some criteria not yet present in the coding 

guide. At the end of the second iteration, we reconcile the 

results and refine the coding guide. This process is repeated 

two more times. Thus, every coder analyzes each document. 

At the end of the four iterations, we obtain a richer set of 

criteria to identify business rules and Rule intents. Towards 

the later iterations, the criteria that each coder identifies 

become repetitive and the process of identification ‘saturates’. 

Table I illustrates examples of rule statements, Rule intents 

they contain, and corresponding Rule intent patterns. In all we 

discovered 29 intents and 517 Rule intent patterns. The details 

of the manual analysis will be published separately. 



Unlike the observations in [23] and [24], the documents we 

studied did not have a uniform structure. They did not 

necessarily adhere to any specific template either. Viewing 

rule statements in terms of fine-grained Rule intents and 

associated patterns was motivated by this lack of structure.  

TABLE I.  RULE STATEMENTS, RULE INTENTS AND RULE INTENT 

PATTERNS 

Rule Statement Rule Intents 
Rule Intent 

Patterns 

During a call to the 
Service Router, the 

application in context 

will be locked to the 
active user. 

Chronology – During 

a call 

During *  

 

Event– call to the 

Service Router 

* call TO + NN *  

 

System state – 

 application in context 

will be locked 

*application + MD 

VB  VBN * 

 

System User – to the 

active user 
+ TO * user * 

If the customer type is 

policyholder, the 

following two 
additional fields are 

displayed in call 

outcome section: 
Interaction Attempted, 

Customer Interaction 

Information Type –If 
customer type is 

policyholder 

If  + type * NNP *  
 

 

Cardinality – 
 two additional fields 

* CD * fields * 

 

Screen Element State 
– fields are displayed 

in call outcome section 

* fields +  

displayed IN + NN 

* 

III. AUTOMATED EXTRACTION AND CLASSIFICATION OF 

RULES 

This section describes a method to automate the 

classification of business rules from project documents. The 

Rule acts used for classification are derived automatically from 

Rule intents. The clusters of frequently co-occurring Rule 

intents are termed Rule acts. We have named them as per the 

system validations they explicate.  

A. Identifying Rule statements  

During the rule identification phase, the Rule Extractor 

evaluates each sentence to determine if it is a rule by 

comparing the words in the training dataset with standard key 

phrases such as should not, may not, until, will be, within, up 

to, and ensure etc. It additionally verifies the sentence against 

Rule intent patterns from the database. If the statement contains 

at least one pattern, it is detected as a rule.  

For example, the Rule Extractor will identify the sentence -

All confirmed acceptance must be done within 24 hours of 

receiving the claim notification as a ‘rule’ because the given 

sentence matches against key phrases – must and within. 

Further, the sentence contains the Rule intent patterns - * MD 

VB VBN * and * within CD hours * that corresponds to Rule 

intents – activity and temporal check respectively. 

B. Determining Rule acts 

The Rule Extractor extracts rule statements from the 

training dataset and stores the output in a database. The Rule 

Act Identifier then runs an agglomerative clustering algorithm 

[3] over the rule statements to identify Rule intents that co-

occur most frequently. These groups/clusters are manually 

analyzed to name the Rule acts. The mechanism to come up 

with Rule acts is unsupervised learning technique where we 

use Rule intents (labeled data) to form clusters and label these 

clusters as Rule acts (unlabeled data).  The identified Rule acts 

are stored in a database. Table II shows some examples. 

TABLE II.  RULE ACTS OBTAINED FROM CLUSTERING RULE INTENTS 

Rule Act : 

Definition  
Rule Intents Example Rule 

Deadline: Rules 

that restrict time 
duration date. 

 temporal check 

 threshold 

 activity 

For the Family plan, the 

loss-claim should be 

submitted within 90 days 
from the date of the 

incident. 

Conditional  

Execution: Rules 
describing checks 

to be performed by 

user or system 
while executing 

process steps 

 chronology 

 conditional 

flow 

 activity 

Likewise, there is a 
suicide clause in the 

policy which is operative 

for one year. If reason for 

death is suicide and that 

occurred within one year 

after the date of proposal, 
then nothing is payable. 

Access Control: 
Rules that restrict  

stakeholder’s 
access or 

constraints 
activities 

performed by 

them  

 stakeholder 

type 

 information 

type 

The system only allows 

the Claim Officer to 

modify the Interim Claim 
payment amounts. The 

Claim Officer will not be 
allowed to alter anything 

else for the Claim in 

question. 

Policy 

Administration: 

Rules related to 
administration of 

insurance policy 

that involves 
activities such as 

policy issuance, 
renewal etc. 

 conditional 

flow 

 policy state 

 policy process 

 temporal check 

It is helpful to confirm to 
the person that the policy 

proceeds do not form part 

of the estate for 
Inheritance Tax 

purposes. But there may 

still be some Inheritance 
Tax liability on the 

premiums paid if 
premiums have been paid 

within 7 years of death 

User Interface 

(UI): Rules related 

to user interface 

describing various 
screen elements, 

screen layout etc. 

 screen element 

state  

 screen 

representation 

 conditional 

flow 

Failing the caller 
verification process, no 

more policy details can 

be retrieved from the 
system as the Policy 

details, Interaction 

history and associated 
plan buttons will remain 

disabled.  

Data Validation: 

Rules that validate 
data processed by 

the system or used 

by stakeholders to 
perform some task 

 Numerical 

value  

 information 

type 

 conditional 

flow 

Regular withdrawals will 
cease when the amount of 

withdrawal exceeds half 

the plan value, eg: Plan 
value = Rs. 2000 

Withdrawal = Rs. 1050 

not allowed. Only a 
withdrawal of Rs. 1000 

would be allowed in this 

case. 

The Rule acts differ in granularity from the  rule types defined 

by Ross [12] as follows: The rule statement If the claim payout 

is less than $ x, a person holding designation of y is authorized 

to waive requirement provided it is found in order, would be 



classified as Derivation Rule (Inference Rule) according to 

Ross’s definition [12]. The rationale for this classification is 

that it infers (a derived term or fact) automatically based on the 

conditions specified explicitly. Using our approach, the 

sentence gets classified into two Rule acts - Data Validation 

(Intents: Numerical Value, Conditional flow, Information Type) 

and Access Control (Intents: Stakeholder Type, Information 

Type). The Rule acts thus explicate implementation specifics. 

They are therefore easier for the practitioners to relate to. A 

Rule act such as Deadline clearly indicates what the system 

should check and the corresponding Rule intents temporal 

check, activity and threshold indicate what parameters must be 

incorporated in the validations. When mapped to corresponding 

process step description statements, they together serve as a set 

of system use cases and system validations. We discuss the 

method of classification in Section IV. 

IV. IDENTIFYING SYSTEM USE CASES AND VALIDATIONS FROM 

THE TEST DATASET 

Our test dataset consists of 30 requirement documents from 

large projects in the Insurance domain. We use the Rule 

Extractor to extract the business rule statements. The rule 

statements are separately stored in a rule repository. The Rule 

Classifier takes these rule statements as an input and classifies 

them into Rule acts based on Rule intents they contain. The 

relevance score of a Rule act for a given rule is calculated 

comparing the number of Rule intents present in the rule 

statement with those that constitute the Rule act. This 

information is also stored in rule repository for all rule 

statements extracted from the test dataset. The rule repository 

contains information about source projects and source files as 

well. 

Next, the Rule Annotator annotates the rule statements 

present in the documents. The annotator uses the information 

about the source project and the source file of a rule statement 

present in rule repository to locate it in the documents. After 

locating the rule, it highlights the rule statement and annotates 

it with its Rule acts, and Rule intents. It also highlights the 

parts of business process step descriptions that contain the key 

phrases in Rule intent patterns. A given rule statement may 

map to one or more process step descriptions and vice versa. 

The rule statements annotated with Rule acts and intents along 

with corresponding process step descriptions are then subject to 

human inspection for selecting system use cases and 

corresponding validations. The annotations make it easier for a 

reader to locate the important text without going through each 

sentence of the document. As discussed earlier, Rule intents 

that constitute a given Rule act clearly indicate what kinds of 

validations need to be implemented in the system. When 

mapped to corresponding process step descriptions, they serve 

as a set of system use cases and validations to be implemented. 

Table III shows an example.  

From the test dataset we could extract a total of 881 rule 

statements. Of these, 738 were found to be correct. A manual 

analysis brought out that the number of rules extracted should 

have been 944. Thus, we have a recall of 78% and a precision 

of 84% for the extraction.  

TABLE III.  RULE ACTS MAPPED WITH PROCESS STEP DESCRIPTIONS  

Process step: Receive completed switch form 

 

Process step description: The insurance company at the time of issuing 
the policy along with sending the policy document, schedules sending of 

switch forms to the policy holder. There could be instances when the 

policy holder would have already exhausted their existing switch forms 
and hence may call up the insurance company and request for a switch 

form. The request can also come from the Fund advisors. On such 

requests, the insurance company sends the switch forms. The policy 
holder has to fill in all the particulars of the switch form and send it back 

to the insurance company. The policy holder may request for the entire 

spread to be switched to the targeted fund or may seek only a percentage 
of the fund to be switched. 

Rule: Check if the correct policy information details, details of switch 

from one fund to another are available in the notification received and 

that the switch is properly authorized. It must be ensured that the date of 
receipt is marked on the switch request. 

Rule intents: document validation, authorization check, information 

type, activity                            

Rule acts:  Data validation, Conditional Execution 

 

Table IV represents the distribution of business rules into 

Rule acts after classifying them using the method discussed 

earlier in this section.  

TABLE IV.  RULE CLASSIFICATION 

Rule acts 
Distribution 

of Rules  

Rules classified 

correctly 

Precision 

(%) 

Deadline 104 75 72.11 

Conditional 
execution 

192  117  60.94 

Access Control 177 93 52.54 

Policy 
Administration 

88 72 81.82 

User Interface (UI) 61 56 91.80 

Data Validation 136 126 92.65 

The average precision for classification is 71.10%. We find 

that the classification precision for Rule acts such as User 

interface (UI) and Data validation is quite high while that for 

Access control and Conditional Execution is low. We are 

working on refining the existing Rule intent patterns and 

identifying new ones using synonyms to improve the precision.   

The Rule acts are then mapped to business process step 

descriptions. Table V shows the results of mappings between 

the Rule acts and process step descriptions. The average 

precision is 72.22% and average recall is 78.43%. As discussed 

earlier, these serve as recommendations to identify system use 

cases and validations.   

 
Key to reading TABLE V: 

A: Number of Business process step descriptions (Automated mapping) 

B: Number of Business process step descriptions selected after human 
inspection of automated mapping 

C: Number of Business process step descriptions that should have been 

mapped (Manual mapping) 



TABLE V.  BUSINESS PROCESS STEPS CORRESPONDING TO RULE ACTS   

Rule acts (Number of rules 

classified correctly) 
A B C 

Precision 

(%) 

Recall 

(%) 

Deadline  (75) 64 52 56 81.25 92.86 

Conditional execution 

(117) 
176 152 153 86.36 99.35 

Access Control  (93) 120 104 160 86.67 65.00 

Policy Administration 

(72) 
116 96 98 82.76 97.96 

User Interface (UI) (56) 96 36 108 37.50 33.33 

Data Validation (126) 148 80 88 54.05 90.91 

 The recall and precision values for the Rule act User 

Interface (UI) is unacceptably low. Our analysis shows that the 

process descriptions corresponding to this Rule act are written 

ambiguously. For example, a manual analysis of a statement 

such as ‘System sends a communication to the FA with the 

details of number of units for each fund before the pre-defined 

cut off time’ suggests that this may require implementing a UI 

component through which the FA can see the details of number 

of units. However, this could also mean that an e-mail is sent to 

the FA and a UI may not be required. We are investigating 

such patterns to arrive at a set of key phrases that would help in 

a better detection. The reasons for low precision for the Rule 

act Data Validation and low recall for the Rule act Access 

Control are also being examined in the light of ambiguities in 

the documented process descriptions. 

The threats to validity of our approach are as follows.  

 Currently we have analyzed the documents from the 

Insurance domain alone. We expect to identify 

additional Rule intent patterns and Rule acts from other 

domains. The work reported here does not reflect these.  

 The manual content analysis is done on stratified 

sample of repository (training set). It is possible that 

some important and interesting Rule intents or Rule 

intent patterns are not identified and hence left out. 

 A rule may get classified into more than one Rule act. 

The final decision to classify a rule is to be made by 

human intervention. 

 The results are being validated with developers for 

their usefulness in practice. Their reactions are 

positive. However, the empirical study is yet to be 

concluded. 

Information represented in images and tables was not 

extracted; this is a technical limitation of the method. 

V. RELATED WORK 

In this paper, we employ a method for an automated 

classification of business rules to detect system use cases and 

validations. Business rules encapsulate significant amount of 

domain, system and business environment related knowledge 

crucial for the system to be developed and used. They capture 

design rationale, explanations on why a particular algorithm, 

pattern, or data structure is used in a system [9, 10]. A large 

body of knowledge has emerged as a result of their significance 

to software engineering. Most of the works attempt to better 

understand the business rules by focusing on (1) definition, (2) 

classification, (3) extraction, and (4) management. Of these, the 

first three are relevant to be discussed in the context of the 

technique employed in our work.  

Definition. Ellen Gottesdiener [11] defines business rules 

as declarative, atomic, expressed in natural language, distinct, 

business oriented and business owned. Ronald Ross [12] 

defines several dozens of atomic rule types and equates them to 

elements in the periodic table using which composite rules can 

be formed. Ceri and Fraternale [13] contend that business rules 

model the reaction to events, which occur in the real world. 

According to the Business Rules Group definition [6], a 

business rule either asserts business structure or controls or 

influences its behavior. It is also defined as a requirement on 

condition or manipulation of data [14] or a computational 

requirement that determines or affects how business is run [15]. 

Classification. The efforts pertaining to classification take 

into account various viewpoints. For example, Wieden et al 

[16] offer 15 different “semantically-oriented” rule types  

grouped into structural, behavioral and managerial categories, 

while Zoet M [17] et al propose a business rule categorization 

that is aligned to the business process management lifecycle. H. 

Herbst, [18] argue that the commonly used data oriented 

methods are insufficient and inconvenient for a complete 

modeling of business rules. To the best of our knowledge, there 

is no work reported on an automated classification of business 

rules from project documents. Cleland-Huang et.al. [19] 

describe a technique for an automated detection and 

classification of non-functional requirements. This work is 

closest in spirit to our work.  

Extraction. Ali et al. [20] suggest an approach that takes 

rule repositories either in relational or text format as input and 

convert it into xml syntax by applying transformation method 

on SQL queries or a parsing and transformation method using 

xquery. Mahgoub et al. [21] integrate XML technology with 

Information Retrieval scheme (TF-IDF) for keyword/feature 

selection that automatically selects the most discriminative 

keywords used for association rules generation and use Data 

Mining technique for association rules discovery. Breaux and 

Antón [22] propose a method to mine rule semantics to 

understand legislative text. The method is applied on privacy 

regulations derived from the Health Insurance Portability and 

Accountability Act (HIPAA). The work reported in [23] 

focuses on semantic extraction of Access Control Policies.  

To the best of our knowledge, this is first time an 

automated detection of system use cases and validations is 

attempted based on classification and annotation of rule 

statements in a document. The novelty of our approach lies in 

(1) providing the right granularity for representing rule 

statements in a Rule Model, and (2) using the Rule Model to 

detect important knowledge elements in software engineering; 

namely system use cases and validations. We focus on working 

with documents which still remains the preferred medium of 

work of practitioners who write requirements. 

VI. CONCLUSION AND FUTURE WORK 

We discuss an approach to automate the detection of 

system use cases and corresponding validations from 



documents. We employ syntactic and semantic NL analyses 

around a Rule Model to (1) identify, and classify rules, (2) 

annotate them with ‘Rule acts’, and (3) recommend their 

possible mappings to business process steps.   

For the extraction, the precision is 84% while for the 

classification; ~ 72%. The Rule act to process step mappings 

recommendations show an average precision of ~ 72 % and a 

recall of ~ 78%. These are encouraging early results. We note 

that in the context of complying with rules, false negatives are 

riskier than false positives. We are exploring technical 

refinements to improve recall for some of the Rule acts. 

Nonetheless, the approach addresses an important practical 

problem by highlighting and annotating the possible system use 

cases and validations for human inspection and selection. To 

the best of our knowledge, this is the first ever attempt to 

automate the classification of rules in documents and use the 

classification for recommending possible system use cases and 

validations. Another interesting contribution of this work is an 

implementation-specific interpretation of Ross’s rule types [12] 

in the form of Rule acts. As an immediate next step, we plan to 

investigate (1) logical grouping of the extracted rules from the 

angle of their complementarity, and (2) identifying 

completeness and ambiguity issue in the extracted rules.   

We are currently working on an ontological representation 

for the Rule intents, Rule acts, and their associations. This is an 

extension of our previous work on domain knowledge 

repositories [25, 26]. With such a representation, business rules 

can be associated with additional domain knowledge elements 

such as business processes, data models, and system 

components. This would allow for an easy reference, 

traceability and reuse in development projects and in product 

configuration exercises that are highly rule-intensive.  

Upon a more comprehensive analysis that covers additional 

business domains, we aim to create a richer corpus of Rule 

intents, associated patterns, and Rule acts. We plan to validate 

the approach in more diverse project situations. 
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