
Detecting System Use Cases and Validations from

Documents

Smita Ghaisas, Manish Motwani, Preethu Rose Anish

Tata Research, Development and Design Center,

54 Hadapsar Industrial Estates, Pune, 411013,

India

{smita.ghaisas, manish.motwani, preethu.rose}@tcs.com

Abstract—Identifying system use cases and corresponding

validations involves analyzing large requirement documents to

understand the descriptions of business processes, rules and

policies. This consumes a significant amount of effort and time.

We discuss an approach to automate the detection of system use

cases and corresponding validations from documents. We have

devised a representation that allows for capturing the essence of

rule statements as a composition of atomic ‘Rule intents’ and key

phrases associated with the intents. Rule intents that co-occur

frequently constitute 'Rule acts’ analogous to the Speech acts in

Linguistics. Our approach is based on NLP techniques designed

around this Rule Model. We employ syntactic and semantic NL

analyses around the model to identify and classify rules and

annotate them with Rule acts. We map the Rule acts to business

process steps and highlight the combinations as potential system

use cases and validations for human supervision.

Index Terms—Requirement documents, System use cases,

validations, NL analyses, Rules, Rule types, Rule acts, Rule intents.

I. INTRODUCTION

In typical distributed development scenarios, requirement

documents are written in consultation with the clients and are

handed over to offshore teams of analysts and developers.

Oftentimes, outsourcing is a multi-vendor process in which

Software Engineering activities are distributed; - requirements

are prepared by one vendor and implemented by another. The

documents need to be studied and analyzed before the

implementation can begin. Large IT vendors generate an

enormous amount of documented knowledge in a given

business domain as a result of executing thousands of projects

over the years. Project managers always hope to reuse this

knowledge in the next new project in the same domain, but

their teams are swamped by the task of having to read the

available documents to identify useful pieces of knowledge. In

large projects spanning over a few years, teams keep changing

and new developers take over from their old counterparts. The

task of having to read and infer from the project documents is a

daunting one for the newcomers.

The scenarios highlight the need for automating the process

of detecting and extracting knowledge elements from existing

documents.

In this paper, we focus on two of the crucial knowledge

elements – (1) System use cases based on business process step

descriptions, and (2) Validations corresponding to business

rules, and policies. System use cases take into account the

design scope so that users can achieve their goals using the

system [1]. A comprehensive set of system use cases therefore

enhances the chances of meeting users’ requirements.

Identifying system use cases and corresponding validations

involves analyzing large requirement documents to understand

the descriptions of business processes, rules and policies of a

client’s organization. This activity consumes a significant

amount of effort and time. We discuss an approach to automate

the detection of system use cases and corresponding validations

from documents.

For this purpose, we studied a sample from 500 requirement

documents from 20 large projects aimed at developing

Insurance systems. The documents contained descriptions of

business processes, rules and policies of clients. We found that

(1) the rule statements are oftentimes embedded in process

descriptions, and (2) the rule statements that practitioners write

are typically compound and complex sentences. Each statement

contains several (intended) constraints which we term ‘Rule

intents’ [2]. Based on our analysis of the documents, we arrived

at a representation that allows for capturing the essence of rule

statements in terms of the atomic Rule intents.

Each rule statement can be represented as a composition of

Rule intents. We store the Rule intents and associated key

phrases in a database. We then run an agglomerative clustering

algorithm [3] over the rule statements to detect the Rule intents

that co-occur most frequently. The groups of frequently co-

occurring intents are manually inspected to name the ‘Rule

acts.’ Analogous to the Speech acts [4, 5] in Linguistics that

express apology, gratitude, and request, the Rule acts explicate

system validations such as access control, data validation, and

conditional execution. The Rule acts we identified from the

document sample are sub-classes of the rule types that Ross

defines [6, 12].

The requirement documents are written by practitioners and

are intended for developers who implement the system.

Therefore the rule statements in the documents are far more

fine-grained than what can be described in terms of Ross’s rule

types. Hence the need to define Rule acts as sub-classes of the

types defined in [6, 12]. Our approach is based on NLP

techniques designed around this Rule Model. We provide a

framework for detecting system use cases and corresponding

validations as follows: We employ syntactic and semantic NL

analyses around the Rule Model to (1) identify and classify

rules, (2) annotate them with Rule acts, and (3) recommend

their possible mappings to business process steps. The process

steps together with associated Rule acts make for a set of

system use cases and validations to be implemented by

developers.

The rest of the paper is organized as follows: In section II,

we discuss the details of the Rule Model. Section III presents

details of the method for an automated extraction and

classification of rules. In Section IV, we discuss our early

results on detecting system use cases and validations. Section V

is a review of related work and Section VI presents conclusions

and future work.

II. RULE MODEL

In this section, we define the key concepts and describe the

method of training the dataset for detecting system use cases

and validations.

We selected 20 documents from a population of 500

documents using the stratified sampling technique [7]. The

documents are from 20 large projects in the Insurance domain.

We performed a manual content analysis on the stratified

sample. We had four coders who studied the requirement

documents, each analyzing 5 documents. We use the following

definitions in the description of our manual content analysis

and in the discussions subsequently.

A. Definitions

Rule intent is defined as an atomic constraint embedded in

a natural language rule statement which is usually a compound

sentence. For example : A rule such as “In Europe, you need to

be above 18 to get a driving license” has 3 Rule intents – (1)

Geographical boundary – In Europe, (2) Threshold – need to be

above 18 and (3) Activity – get a driving license. We observe

from our manual analysis of documents that any rule statement

is composed of one or more Rule intents.

Rule intent patterns are syntactic representations of

phrases and keywords associated with Rule intents in a rule

statement. The Rule intent pattern is a combination of Parts of

Speech (POS) tags [8], keywords and wild card characters

(‘*’, ‘+’, ‘.’) where ‘*’ represents a frequency of 0 or more

occurrences of words, ‘+’ represents a frequency of 1 or more

occurrences of words and ‘.’ represents exactly 1 occurrence

of a word.

For example, consider the following sentence:

For the Family plan, the loss-claim should be submitted within

90 days from the date of the incident.

The sentence is decomposed into the following four parts

based on the Rule intents it contains. Using the keywords and

POS tags, Rule intent patterns are then created for each part.

These patterns are stored in a database along with the

corresponding Rule intents.

1. For/IN the/DT Family/NNP plan/NN, (intent: Information

Type; pattern: + NNP * plan *)

2. ,/,the/DT loss-claim/NN should/MD be/VB

submitted/VBN (intent: Activity; pattern: * claim + MD

VB + VBN *)

3. within/IN 90/CD days (intent: Temporal Check; pattern:

* within CD days *)

4. from/IN the/DT date/NN of/IN the/DT incident/NN

(intent: Threshold; pattern: * from + date of +)

Rule acts are composed of frequently co-occurring Rule

intents. As explained earlier, they explicate validations such as

access control, data validation, and conditional execution

which upon implementation, will conform to the corresponding

relevant rules. The Rule acts are sub-classes of the rule types

that Ross defines [12].

Fig.1 shows the Rule Model elements and their associations

using the UML class diagram notation. We use this model

to extract, classify and annotate rules with rule acts and map

them with process step descriptions that contain the key

phrases in the rule intent patterns. The process steps

together with associated rule acts make for a set of system

use cases and validations to be implemented. We describe

the method of detection in Section III.

Fig.1 Rule elements and their associations

B. Manual Content Analysis

In order to facilitate reconciliation of analysis by 4 different

coders, we prepared a coding guide based on our pilot

iteration. The guide contains criteria for (1) identifying a rule

statement using the basic definition [6, 12], and (2) identifying

the Rule intents and patterns according to the definitions

above. The sets are then exchanged by the coders and a second

iteration is performed. They may also identify additional

statements as business rules if they can rationalize their

decision based on some criteria not yet present in the coding

guide. At the end of the second iteration, we reconcile the

results and refine the coding guide. This process is repeated

two more times. Thus, every coder analyzes each document.

At the end of the four iterations, we obtain a richer set of

criteria to identify business rules and Rule intents. Towards

the later iterations, the criteria that each coder identifies

become repetitive and the process of identification ‘saturates’.

Table I illustrates examples of rule statements, Rule intents

they contain, and corresponding Rule intent patterns. In all we

discovered 29 intents and 517 Rule intent patterns. The details

of the manual analysis will be published separately.

Unlike the observations in [23] and [24], the documents we

studied did not have a uniform structure. They did not

necessarily adhere to any specific template either. Viewing

rule statements in terms of fine-grained Rule intents and

associated patterns was motivated by this lack of structure.

TABLE I. RULE STATEMENTS, RULE INTENTS AND RULE INTENT

PATTERNS

Rule Statement Rule Intents
Rule Intent

Patterns

During a call to the
Service Router, the

application in context

will be locked to the
active user.

Chronology – During

a call

During *

Event– call to the

Service Router

* call TO + NN *

System state –

 application in context

will be locked

*application + MD

VB VBN *

System User – to the

active user
+ TO * user *

If the customer type is

policyholder, the

following two
additional fields are

displayed in call

outcome section:
Interaction Attempted,

Customer Interaction

Information Type –If
customer type is

policyholder

If + type * NNP *

Cardinality –
 two additional fields

* CD * fields *

Screen Element State
– fields are displayed

in call outcome section

* fields +

displayed IN + NN

*

III. AUTOMATED EXTRACTION AND CLASSIFICATION OF

RULES

This section describes a method to automate the

classification of business rules from project documents. The

Rule acts used for classification are derived automatically from

Rule intents. The clusters of frequently co-occurring Rule

intents are termed Rule acts. We have named them as per the

system validations they explicate.

A. Identifying Rule statements

During the rule identification phase, the Rule Extractor

evaluates each sentence to determine if it is a rule by

comparing the words in the training dataset with standard key

phrases such as should not, may not, until, will be, within, up

to, and ensure etc. It additionally verifies the sentence against

Rule intent patterns from the database. If the statement contains

at least one pattern, it is detected as a rule.

For example, the Rule Extractor will identify the sentence -

All confirmed acceptance must be done within 24 hours of

receiving the claim notification as a ‘rule’ because the given

sentence matches against key phrases – must and within.

Further, the sentence contains the Rule intent patterns - * MD

VB VBN * and * within CD hours * that corresponds to Rule

intents – activity and temporal check respectively.

B. Determining Rule acts

The Rule Extractor extracts rule statements from the

training dataset and stores the output in a database. The Rule

Act Identifier then runs an agglomerative clustering algorithm

[3] over the rule statements to identify Rule intents that co-

occur most frequently. These groups/clusters are manually

analyzed to name the Rule acts. The mechanism to come up

with Rule acts is unsupervised learning technique where we

use Rule intents (labeled data) to form clusters and label these

clusters as Rule acts (unlabeled data). The identified Rule acts

are stored in a database. Table II shows some examples.

TABLE II. RULE ACTS OBTAINED FROM CLUSTERING RULE INTENTS

Rule Act :

Definition
Rule Intents Example Rule

Deadline: Rules

that restrict time
duration date.

 temporal check

 threshold

 activity

For the Family plan, the

loss-claim should be

submitted within 90 days
from the date of the

incident.

Conditional

Execution: Rules
describing checks

to be performed by

user or system
while executing

process steps

 chronology

 conditional

flow

 activity

Likewise, there is a
suicide clause in the

policy which is operative

for one year. If reason for

death is suicide and that

occurred within one year

after the date of proposal,
then nothing is payable.

Access Control:
Rules that restrict

stakeholder’s
access or

constraints
activities

performed by

them

 stakeholder

type

 information

type

The system only allows

the Claim Officer to

modify the Interim Claim
payment amounts. The

Claim Officer will not be
allowed to alter anything

else for the Claim in

question.

Policy

Administration:

Rules related to
administration of

insurance policy

that involves
activities such as

policy issuance,
renewal etc.

 conditional

flow

 policy state

 policy process

 temporal check

It is helpful to confirm to
the person that the policy

proceeds do not form part

of the estate for
Inheritance Tax

purposes. But there may

still be some Inheritance
Tax liability on the

premiums paid if
premiums have been paid

within 7 years of death

User Interface

(UI): Rules related

to user interface

describing various
screen elements,

screen layout etc.

 screen element

state

 screen

representation

 conditional

flow

Failing the caller
verification process, no

more policy details can

be retrieved from the
system as the Policy

details, Interaction

history and associated
plan buttons will remain

disabled.

Data Validation:

Rules that validate
data processed by

the system or used

by stakeholders to
perform some task

 Numerical

value

 information

type

 conditional

flow

Regular withdrawals will
cease when the amount of

withdrawal exceeds half

the plan value, eg: Plan
value = Rs. 2000

Withdrawal = Rs. 1050

not allowed. Only a
withdrawal of Rs. 1000

would be allowed in this

case.

The Rule acts differ in granularity from the rule types defined

by Ross [12] as follows: The rule statement If the claim payout

is less than $ x, a person holding designation of y is authorized

to waive requirement provided it is found in order, would be

classified as Derivation Rule (Inference Rule) according to

Ross’s definition [12]. The rationale for this classification is

that it infers (a derived term or fact) automatically based on the

conditions specified explicitly. Using our approach, the

sentence gets classified into two Rule acts - Data Validation

(Intents: Numerical Value, Conditional flow, Information Type)

and Access Control (Intents: Stakeholder Type, Information

Type). The Rule acts thus explicate implementation specifics.

They are therefore easier for the practitioners to relate to. A

Rule act such as Deadline clearly indicates what the system

should check and the corresponding Rule intents temporal

check, activity and threshold indicate what parameters must be

incorporated in the validations. When mapped to corresponding

process step description statements, they together serve as a set

of system use cases and system validations. We discuss the

method of classification in Section IV.

IV. IDENTIFYING SYSTEM USE CASES AND VALIDATIONS FROM

THE TEST DATASET

Our test dataset consists of 30 requirement documents from

large projects in the Insurance domain. We use the Rule

Extractor to extract the business rule statements. The rule

statements are separately stored in a rule repository. The Rule

Classifier takes these rule statements as an input and classifies

them into Rule acts based on Rule intents they contain. The

relevance score of a Rule act for a given rule is calculated

comparing the number of Rule intents present in the rule

statement with those that constitute the Rule act. This

information is also stored in rule repository for all rule

statements extracted from the test dataset. The rule repository

contains information about source projects and source files as

well.

Next, the Rule Annotator annotates the rule statements

present in the documents. The annotator uses the information

about the source project and the source file of a rule statement

present in rule repository to locate it in the documents. After

locating the rule, it highlights the rule statement and annotates

it with its Rule acts, and Rule intents. It also highlights the

parts of business process step descriptions that contain the key

phrases in Rule intent patterns. A given rule statement may

map to one or more process step descriptions and vice versa.

The rule statements annotated with Rule acts and intents along

with corresponding process step descriptions are then subject to

human inspection for selecting system use cases and

corresponding validations. The annotations make it easier for a

reader to locate the important text without going through each

sentence of the document. As discussed earlier, Rule intents

that constitute a given Rule act clearly indicate what kinds of

validations need to be implemented in the system. When

mapped to corresponding process step descriptions, they serve

as a set of system use cases and validations to be implemented.

Table III shows an example.

From the test dataset we could extract a total of 881 rule

statements. Of these, 738 were found to be correct. A manual

analysis brought out that the number of rules extracted should

have been 944. Thus, we have a recall of 78% and a precision

of 84% for the extraction.

TABLE III. RULE ACTS MAPPED WITH PROCESS STEP DESCRIPTIONS

Process step: Receive completed switch form

Process step description: The insurance company at the time of issuing
the policy along with sending the policy document, schedules sending of

switch forms to the policy holder. There could be instances when the

policy holder would have already exhausted their existing switch forms
and hence may call up the insurance company and request for a switch

form. The request can also come from the Fund advisors. On such

requests, the insurance company sends the switch forms. The policy
holder has to fill in all the particulars of the switch form and send it back

to the insurance company. The policy holder may request for the entire

spread to be switched to the targeted fund or may seek only a percentage
of the fund to be switched.

Rule: Check if the correct policy information details, details of switch

from one fund to another are available in the notification received and

that the switch is properly authorized. It must be ensured that the date of
receipt is marked on the switch request.

Rule intents: document validation, authorization check, information

type, activity

Rule acts: Data validation, Conditional Execution

Table IV represents the distribution of business rules into

Rule acts after classifying them using the method discussed

earlier in this section.

TABLE IV. RULE CLASSIFICATION

Rule acts
Distribution

of Rules

Rules classified

correctly

Precision

(%)

Deadline 104 75 72.11

Conditional
execution

192 117 60.94

Access Control 177 93 52.54

Policy
Administration

88 72 81.82

User Interface (UI) 61 56 91.80

Data Validation 136 126 92.65

The average precision for classification is 71.10%. We find

that the classification precision for Rule acts such as User

interface (UI) and Data validation is quite high while that for

Access control and Conditional Execution is low. We are

working on refining the existing Rule intent patterns and

identifying new ones using synonyms to improve the precision.

The Rule acts are then mapped to business process step

descriptions. Table V shows the results of mappings between

the Rule acts and process step descriptions. The average

precision is 72.22% and average recall is 78.43%. As discussed

earlier, these serve as recommendations to identify system use

cases and validations.

Key to reading TABLE V:

A: Number of Business process step descriptions (Automated mapping)

B: Number of Business process step descriptions selected after human
inspection of automated mapping

C: Number of Business process step descriptions that should have been

mapped (Manual mapping)

TABLE V. BUSINESS PROCESS STEPS CORRESPONDING TO RULE ACTS

Rule acts (Number of rules

classified correctly)
A B C

Precision

(%)

Recall

(%)

Deadline (75) 64 52 56 81.25 92.86

Conditional execution

(117)
176 152 153 86.36 99.35

Access Control (93) 120 104 160 86.67 65.00

Policy Administration

(72)
116 96 98 82.76 97.96

User Interface (UI) (56) 96 36 108 37.50 33.33

Data Validation (126) 148 80 88 54.05 90.91

 The recall and precision values for the Rule act User

Interface (UI) is unacceptably low. Our analysis shows that the

process descriptions corresponding to this Rule act are written

ambiguously. For example, a manual analysis of a statement

such as ‘System sends a communication to the FA with the

details of number of units for each fund before the pre-defined

cut off time’ suggests that this may require implementing a UI

component through which the FA can see the details of number

of units. However, this could also mean that an e-mail is sent to

the FA and a UI may not be required. We are investigating

such patterns to arrive at a set of key phrases that would help in

a better detection. The reasons for low precision for the Rule

act Data Validation and low recall for the Rule act Access

Control are also being examined in the light of ambiguities in

the documented process descriptions.

The threats to validity of our approach are as follows.

 Currently we have analyzed the documents from the

Insurance domain alone. We expect to identify

additional Rule intent patterns and Rule acts from other

domains. The work reported here does not reflect these.

 The manual content analysis is done on stratified

sample of repository (training set). It is possible that

some important and interesting Rule intents or Rule

intent patterns are not identified and hence left out.

 A rule may get classified into more than one Rule act.

The final decision to classify a rule is to be made by

human intervention.

 The results are being validated with developers for

their usefulness in practice. Their reactions are

positive. However, the empirical study is yet to be

concluded.

Information represented in images and tables was not

extracted; this is a technical limitation of the method.

V. RELATED WORK

In this paper, we employ a method for an automated

classification of business rules to detect system use cases and

validations. Business rules encapsulate significant amount of

domain, system and business environment related knowledge

crucial for the system to be developed and used. They capture

design rationale, explanations on why a particular algorithm,

pattern, or data structure is used in a system [9, 10]. A large

body of knowledge has emerged as a result of their significance

to software engineering. Most of the works attempt to better

understand the business rules by focusing on (1) definition, (2)

classification, (3) extraction, and (4) management. Of these, the

first three are relevant to be discussed in the context of the

technique employed in our work.

Definition. Ellen Gottesdiener [11] defines business rules

as declarative, atomic, expressed in natural language, distinct,

business oriented and business owned. Ronald Ross [12]

defines several dozens of atomic rule types and equates them to

elements in the periodic table using which composite rules can

be formed. Ceri and Fraternale [13] contend that business rules

model the reaction to events, which occur in the real world.

According to the Business Rules Group definition [6], a

business rule either asserts business structure or controls or

influences its behavior. It is also defined as a requirement on

condition or manipulation of data [14] or a computational

requirement that determines or affects how business is run [15].

Classification. The efforts pertaining to classification take

into account various viewpoints. For example, Wieden et al

[16] offer 15 different “semantically-oriented” rule types

grouped into structural, behavioral and managerial categories,

while Zoet M [17] et al propose a business rule categorization

that is aligned to the business process management lifecycle. H.

Herbst, [18] argue that the commonly used data oriented

methods are insufficient and inconvenient for a complete

modeling of business rules. To the best of our knowledge, there

is no work reported on an automated classification of business

rules from project documents. Cleland-Huang et.al. [19]

describe a technique for an automated detection and

classification of non-functional requirements. This work is

closest in spirit to our work.

Extraction. Ali et al. [20] suggest an approach that takes

rule repositories either in relational or text format as input and

convert it into xml syntax by applying transformation method

on SQL queries or a parsing and transformation method using

xquery. Mahgoub et al. [21] integrate XML technology with

Information Retrieval scheme (TF-IDF) for keyword/feature

selection that automatically selects the most discriminative

keywords used for association rules generation and use Data

Mining technique for association rules discovery. Breaux and

Antón [22] propose a method to mine rule semantics to

understand legislative text. The method is applied on privacy

regulations derived from the Health Insurance Portability and

Accountability Act (HIPAA). The work reported in [23]

focuses on semantic extraction of Access Control Policies.

To the best of our knowledge, this is first time an

automated detection of system use cases and validations is

attempted based on classification and annotation of rule

statements in a document. The novelty of our approach lies in

(1) providing the right granularity for representing rule

statements in a Rule Model, and (2) using the Rule Model to

detect important knowledge elements in software engineering;

namely system use cases and validations. We focus on working

with documents which still remains the preferred medium of

work of practitioners who write requirements.

VI. CONCLUSION AND FUTURE WORK

We discuss an approach to automate the detection of

system use cases and corresponding validations from

documents. We employ syntactic and semantic NL analyses

around a Rule Model to (1) identify, and classify rules, (2)

annotate them with ‘Rule acts’, and (3) recommend their

possible mappings to business process steps.

For the extraction, the precision is 84% while for the

classification; ~ 72%. The Rule act to process step mappings

recommendations show an average precision of ~ 72 % and a

recall of ~ 78%. These are encouraging early results. We note

that in the context of complying with rules, false negatives are

riskier than false positives. We are exploring technical

refinements to improve recall for some of the Rule acts.

Nonetheless, the approach addresses an important practical

problem by highlighting and annotating the possible system use

cases and validations for human inspection and selection. To

the best of our knowledge, this is the first ever attempt to

automate the classification of rules in documents and use the

classification for recommending possible system use cases and

validations. Another interesting contribution of this work is an

implementation-specific interpretation of Ross’s rule types [12]

in the form of Rule acts. As an immediate next step, we plan to

investigate (1) logical grouping of the extracted rules from the

angle of their complementarity, and (2) identifying

completeness and ambiguity issue in the extracted rules.

We are currently working on an ontological representation

for the Rule intents, Rule acts, and their associations. This is an

extension of our previous work on domain knowledge

repositories [25, 26]. With such a representation, business rules

can be associated with additional domain knowledge elements

such as business processes, data models, and system

components. This would allow for an easy reference,

traceability and reuse in development projects and in product

configuration exercises that are highly rule-intensive.

Upon a more comprehensive analysis that covers additional

business domains, we aim to create a richer corpus of Rule

intents, associated patterns, and Rule acts. We plan to validate

the approach in more diverse project situations.

ACKNOWLEDGMENT

We thank the BaNCS Insurance unit of Tata Consultancy

Services for many useful discussions and practical insights into

rule usage in large projects.

REFERENCES

[1] A. Cockburn, Writing Effective Use cases, Reminder 13, p216, Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA ©2000

[2] S. Ghaisas, M. Motwani, P. R. Anish, S. Sharma, Automated
classification of Business rules from text, US Patent pending,
Application No 13/778850

[3] P. Cimiano, A. Hotho, & S. Staab, “Comparing conceptual, divisive and
agglomerative clustering for learning taxonomies from text.”
Proceedings of the European Conference on Artificial Intelligence
(ECAI), pp. 435–439, 2004

[4] F. Ibekwe-SanJuan, S. Fernandez, E. SanJuan, and E. Charton,
“Annotation of scientific summaries for information retrieval”.
Proceedings of the Workshop on Exploiting Semantic Annotations in
Information Retrieval (ESAIR), Glasgow, Scotland, 2008

[5] S. Teufel and M. Moens. Sentence extraction and rhetorical
classification for flexible abstracts. In D. Radev and E. Hovy, editors,
Intelligent Text Summarization, The Association for the Advancement

of Artificial Intelligence Spring Symposium, pages 16-25. AAAI Press,
Menlo Park, CA, 1998

[6] Business Rules Group; Defining business rules, what are they really?,
July 2000, http://www.businessrulesgroup.org/first_paper/BRG-
whatisBR_3ed.pdf. Last accessed on August 2013

[7] J. J. Castillo, Stratified Sampling Method. Retrieved March 2012 from
Experiment Resources,(2009), Webpage: http://www.experiment-
resources.com/stratified-sampling.html

[8] OpenNLP Part-of-Speech (POS) Tags: Penn English Treebank,
Webpage: http://blog.dpdearing.com/2011/12/opennlp-part-of-speech-
pos-tags-penn-english-treebank/

[9] J. Boyer and H. Mili, Agile business rule development, Springer Verlag
Berlin Heidelberg, ISBN: 978-3-642-19040-7, 2011

[10] G. R. Ronald, Business Rule Concepts: Getting to the Point of
Knowledge (Third Edition), ISBN 0-941049-07-8, August 2009

[11] E. Gottesdiener, “Business RULES - Show Power, Promise”. EBG
Consulting, Inc. Application Development Trends, vol. 4 no.3.1997

[12] R. G. Ross, The Business Rule Book: Classifying, Defining and
Modeling Rules, Business Rule Solutions Inc; 2nd edition, 1997

[13] S. Ceri, and P Fraternale, Designing Database Applications with Objects
and Rules, The IDEA Mehtodology, Addison and Wesley, 1997

[14] P.G. Sellfridge, R.C Waters, E Chikofssky. “Challenges to the field of
reverse engineering”, Proceedings of Working Conference on Reverse
Engineering (WCRE), Baltimore, Maryland, USA, pp. 144-150, 1993

[15] D. Rosca, S. Greenspan, M. Feblowitz, and C .Wild, “A decision
making methodology in support of the business rules life cycle”,
Proceedings of IEEE International Requirements Engineering
conference, pp.236-246, 1997

[16] M. Weiden, L. Hermans, G. Schreiber and S. V. D. Zee. “Classification
and representation of business rules”, Technical Report, University of
Amsterdam, 2002

[17] M. Zoet, J. Versendaal, P. Ravesteyn, R. Welke.,”Alignment of business
process management and business rules”, Proceedings of the European
Conference on Information Systems (ECIS), 2011

[18] H. Herbst, G. Knolmayer, T. Myrach and M. Schlesinger. “The
specification of business rules: A comparison of selected
methodologies”, published in: A.A. Verijn-Stuart, T.-W. Olle (Eds.),
Methods and Associated Tools for the Information System Life Cycle,
Amsterdam et al.: Elsevier, pp. 29-46, 1994

[19] J. C.-Huang, R. Settimi, X. Zou, P.Solc, “Automated classification of
non-functional requirements”, Proceedings of IEEE International
Requirements Engineering conference, vol.12, pp.103-120, May 2007

[20] S. Ali, B. Soh, and J. Lai, “Rule extraction methodology by using XML
for business rules documentation,” Proceedings of the 3rd International
Conference on Industrial Informatics, pp. 357-361, 2005

[21] H. Mahgoub, D. Rosner, N. Ismail, F. Torkey, ”A text mining technique
using association rules extraction”, International Journal of Information
and Mathematical Sciences vol. 4, no.1, 2008

[22] T. Breaux, and A.I. Antón, “Mining rule semantics to understand
legislative compliance”, Proceedings of ACM workshop on Privacy in
the electronic society, November 2005, Alexandria, VA, USA

[23] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie. “Automated
extraction of security policies from natural-language software
documents”. Proceedings of 20th International Symposium on the
Foundations of Software Engineering (FSE), pp. 12:1–12:11, 2012

[24] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.
“Inferring method specifications from natural language API
descriptions”, Proceedings of 34th International Conference on Software
Engineering (ICSE), pp. 815–825, 2012

[25] S. Ghaisas and N. Ajmeri, Knowledge assisted requirements evolution,
In Press, Managing requirements Knowledge, (MaRK) Ed., Springer

 http://www.springer.com/computer/swe/book/978-3-642-34418-3

[26] N. Ajmeri, R. Sejpal, S. Ghaisas,: “A semantic and collaborative

platform for agile requirements evolution”, Proceedings of 3rd
International Workshop on Managing Requirements Knowledge, pp. 32-

-40. IEEE Press, 2010, Sydney.

