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Abstract—Automatic program repair (APR) has recently
gained attention because it proposes to fix software defects with
no human intervention. To automatically fix defects, most APR
tools use the developer-written tests to (a) localize the defect, and
(b) generate and validate the automatically produced candidate
patches based on the constraints imposed by the tests. While
APR tools can produce patches that appear to fix the defect for
11-19% of the defects in real-world software, most of the patches
produced are not correct or acceptable to developers because they
overfit to the tests used during the repair process. This problem is
known as the patch overfitting problem. To address this problem,
I propose to equip APR tools with additional constraints derived
from natural-language software artifacts such as bug reports and
requirements specifications that describe the bug and intended
software behavior but are not typically used by the APR tools.
I hypothesize that patches produced by APR tools while using
such additional constraints would be of higher quality. To test
this hypothesis, I propose an automated and objective approach
to evaluate the quality of patches, and propose two novel methods
to improve the fault localization and developer-written test suites
using natural-language software artifacts. Finally, I propose to
use my patch evaluation methodology to analyze the effect of
the improved fault localization and test suites on the quality of
patches produced by APR tools for real-world defects.

I. RESEARCH PROBLEM AND HYPOTHESIS

Automated program repair (APR) tools aim to reduce the cost
of manually fixing bugs by automatically producing patches [1]-
[3]. APR tools have been successful enough to be used in
industry [4], [S]. The goal of APR tools is to take a program and
a suite of tests, some of which that program passes and some of
which it fails, and to produce a patch that makes the program
pass all the tests in that suite. Unfortunately, these patches
can repair some functionality encoded by the tests, while
simultaneously breaking other, undertested functionality [6].
Thus, quality of the resulting patches is a critical concern.
Recent results suggest that the patch overfitting problem —
patches pass a particular set of test cases supplied to the APR
tool but fail to generalize to the desired specification— is
common [6]-[9] and more than 50% of the patches produced
by APR tools overfit to the tests used in the repair process [10].
This makes developers lose trust in the APR tools deterring
their wide-scale adoption in practice [11]. The goal of my
dissertation is to improve the quality of APR tools.

Most state-of-the-art APR tools use developer-written tests to
localize the defect, and generate and validate the automatically
produced candidate patches based on the constraints imposed
by the tests. While test suites provide an easy-to-use (because
they are executable) specification, software typically contains
many more artifacts that describe the desired correct software

behavior. Many of these software artifacts such as requirements
specifications, code comments, and bug reports use natural-
language text to describe the bug and intended software
behavior, and are therefore not directly used by the APR tools.
I hypothesize that if I can derive executable constraints from
such natural-language software artifacts and equip APR tools
with these additional constraints, it could further constraint the
search space of the candidate patches and would improve the
quality of patches produced. The central goal of my dissertation
is to test this hypothesis and for that I divide my dissertation
work into the following four thrusts:

1. Evaluating patch quality (Section II-A). The goal
of this thrust is to develop an objective and scalable
methodology to evaluate the quality of patches produced
by APR tools. I plan to use this methodology to evaluate
the quality of patches produced by APR tools for the real-
world defects, and analyze how test suite characteristics
correlate with patch quality.

2. Improving fault localization (Section II-B). The goal
of this thrust is to develop an approach that uses multiple
information sources such as bug reports and test suites to
locate defective program elements. I plan to evaluate this
approach to localize defects in large, real-world programs
and study the effect of improved fault localization on
patch quality.

3. Improving test suites (Section II-C). The goal of
this thrust is to develop a technique to generate exe-
cutable tests with oracles from natural language software
specifications. I plan to evaluate this technique by
generating tests from the publicly accessible and reliable
specifications of real-world software and analyze the
effectiveness of the generated tests. Further, I plan to
study the effect of improved test suites on patch quality.

4. Investigating the effect of improved fault localization
and test suites on patch quality (Section II-D). The
goal of this thrust is to put together the improved fault
localization (Section II-B) and developer-written test
suites (Section II-C), and then to use the proposed patch
evaluation methodology (Section II-A) to validate the
proposed hypothesis using real-world defects.

APR tools typically follow a three-step process: (1) identify
the location of the defect (fault localization), (2) generate
candidate patches by modifying defective location (patch
generation), and (3) validate if the candidate patch fixes
the defect (patch validation). The method used for each



of these steps can significantly affect the tool’s success.
Existing research in APR has mostly focused on devising
novel patch generation algorithms (e.g., heuristic-based [12]—
[16], constraint-based [17]-[20], and learning-based [21]-[23])
aimed to produce more correct patches. Recently, researchers
have started investigating the effect of using different tech-
nologies, assumptions, and adaptations of fault localization
techniques [24]-[29], and patch validation methodologies [30]-
[35] on the performance of APR tools. Recent patch validation
methodologies employ machine learning models to identify
overfitted patches based on their source code features. Unlike
existing methods, my proposed methods aim to improve the
steps of the repair process by using information derived
from natural-language software artifacts. The improved fault
localization shall enable APR tools to produce patches for the
correct defective locations while the improved test suites will
increase the constraints imposed on candidate patches during
the patch generation and validation steps, and therefore shall
improve the quality of produced patches.

II. RESEARCH CONTRIBUTIONS AND RESULTS SO FAR

This section describes the research contributions organized
in terms of the four thrusts of the dissertation. I describe
each contribution in the context of existing research work and
present the results obtained so far.

A. Evaluating Patch Quality

To address the patch overfitting problem, we first need
a method to evaluate the quality of the produced patches.
Prior studies of quality of APR have either used manual
inspection [7], [36], or have used automatically generated,
independent, evaluation test suites not used during the repair
process [6], [37]. The issue with manual inspection is that it
cannot scale to evaluate hundreds of automatically produced
patches and can be subject to subconscious bias, especially if
the inspectors are authors of the tools being evaluated [38].
Contrastingly, using evaluation tests is inherently partial, as the
generated tests may undertest the patched program. Existing
studies that use evaluation tests focus on small programs and
relatively-easy-to-fix defects [6], [37].

To address these issues, I proposed a methodology [10]
that uses high—quality evaluation test suites to evaluate the
quality of the produced patches. My methodology uses today’s
state-of-the-art test-suite generation techniques and overcomes
their shortcomings to produce high-quality test suites. The
automatically generated evaluation test suites used in my
methodology cover 100% of all the developer-modified methods
and at least 80% of all the developer-modified classes. My
methodology ensures that the evaluation test suites do not
undertest the patched program.

I performed a detailed study [10] to investigate the patch
overfitting problem and identify the correlation between test
suite characteristics and patch quality. I evaluated four
representative APR tools (GenProg [39], TrpAutoRepair [40],
Par [41], and SimFix [16]) on 357 real-world defects in 5 large,
complex Java projects from the Defects4] benchmark [42]. My

evaluation employed rigorous statistical analyses and controlled
for confounding factors to increase the likelihood that my
results generalize. I answered four research questions:

RQ1.1 How often and how much do the patches pro-
duced by APR tools overfit to the developer-written test
suite and fail to generalize to the evaluation test suite, and
thus ultimately to the program specification? Often. For
the four tools I evaluated, only between 13.8% and 41.6% of
the patches pass 100% of an independent test suite. Patches
typically break more functionality than they repair.

RQ1.2 How do the coverage and size of the test suite used
to produce the patch affect patch quality? Larger test suites
produce slightly higher-quality patches, though, surprisingly,
the effect is extremely small. Also surprisingly, higher-coverage
test suites correlate with lower quality, but, again, the effect
size is extremely small.

RQ1.3 How does the number of tests that a buggy
program fails affect the degree to which the generated
patches overfit? The number of failing tests correlates with
slightly higher quality patches.

RQ1.4 How does the test suite provenance (whether it
is written by developers or generated automatically) influ-
ence patch quality? Test suite provenance has a significant
effect on patch quality, although the effect may differ for
different APR tools. In most cases, human-written tests lead
to higher-quality patches.

These results corroborate the patch overfitting problem
in the state-of-the-art APR tools. Further, these results
indicate that improving the quality of test suites used in
the repair process can potentially improve the quality
of automatically produced patches.

B. Improving Fault Localization

Fault localization (FL) is recently identified as a key aspect
of APR that affects patch correctness [17], [24], [25], [28],
[43], [44]. To identify the defective program elements, most
APR tools use spectrum-based fault localization (SBFL), which
uses test-execution coverage to compute the suspiciousness
scores of the program’s elements, such as classes, methods,
and statements. The elements are ranked based on these scores
and APR tools use top-ranked elements as candidate locations
to patch defects. To the best of my knowledge, only two APR
tools, R2Fix [45] and iFixR [27], use information retrieval-
based fault localization (IRFL), which ranks suspicious program
elements based on their similarity with the text in bug reports.
Using SBFL and IRFL can be complementary. For example,
iFixR patches defects that 16 SBFL APR tools cannot, and
vice versa [27]. Recent studies also show that combining
FL techniques that use different information sources (e.g., SBFL
using test suites and IRFL using bug reports) can significantly
outperform individual FL techniques in terms of localizing
defects [46]-[48]. Based on these findings, I hypothesize that
using combined SBFL and IRFL can enable APR tools to patch



all the defects that they can patch when using the underlying
SBFL and IRFL alone, and perhaps some others. To the best
of my knowledge, this is the first investigation of the effect of
combined FL on APR.

Existing approaches [46]-[50] to combine multiple FL
techniques, are based on learning to rank [51], supervised
deep machine learning techniques. The performance and
generalizability of such approaches depend heavily on the
dataset and features used for training the machine learning
model. 1 proposed to use an unsupervised approach that
requires no training. To combine FL techniques, I developed
Rank Aggregagtion-based FL. (RAFL) [52], a novel approach
that uses rank aggregation algorithms [53] to combine the top-
k ranked statements produced using different FL techniques.
RAFL measures the similarity of the two ranked lists using
the Spearman footrule distance [54] and runs the cross-entropy
Monte Carlo algorithm [55] to produce a super list of top-k
statements while maximizing the similarity to the individual
lists. RAFL can combine FL results obtained using any set
of techniques; in my dissertation, I specifically focus on
combining SBFL and IRFL, as these two are used in APR.

Existing IRFL techniques [56]-[60] are not well suited
for APR because they localize defects at the file or method
level, whereas APR tools need statement-level granularity. I
developed Blues [52], a statement-level IRFL technique based
on BLUIR [57], an existing file-level IRFL technique. Blues
considers the abstract syntax tree (AST) representations of
program statements as a collection of documents, and bug
report as a query, and uses a structured information retrieval
technique to rank the statements based on their similarity with
the bug report. Blues is the first unsupervised statement-level
IRFL technique. The prior statement-level IRFL technique,
D&C [61] used by iFixR [27], requires supervised training.

I implemented an SBFL technique using GZoltar v1.7.2, and
the Ochiai ranking strategy, which is one of the most effective
ranking strategies in object-oriented programs [46], [50]. I
evaluated this SBFL technique, Blues, and their RAFL-enabled
combination SBIR, on 818 real-world defects from 17 large
Java projects in the Defects4] v2.0 benchmark [62].

To test if the combined FL improves the quality of patches,
I used SimFix [16], a state-of-the-art APR tool. I chose
SimFix because a recent study [27] found that it outperforms
a suite of 16 other APR tools, including iFixR, kPAR [43],
AVATAR [63], and LSRepair [64], as well as others. I ran
SimFix on 818 defects in Defects4] v2.0 for which bug reports
are available using my SBFL implementation, Blues, and
SBIR. To evaluate the correctness of patches, I used my patch
evaluation methodology (recall Section II-A). I answered three
research questions:

RQ2.1 Does SBIR localize more defects than the under-
lying SBFL and Blues techniques? Yes, SBIR outperforms
SBFL and Blues, for all sizes of suspicious statement lists
investigated (1, 25, 50, 100). For example, SBIR correctly
identifies a buggy statement as the most suspicious for 148 of
the 818 (18.1%) defects, whereas SBFL does so for 89 (10.9%)
and Blues for 25 (3.1%).

RQ2.2 Does using SBIR in APR patch more defects?
Using SBIR enables SimFix to patch marginally more defects
(112 out of 818) than using SBFL (110) and significantly more
than using Blues (55). With SBIR, SimFix produces patches
for most of the defects patched using SBFL or Blues, as well
as 3 new defects that could not be patched previously. Further,
with SBIR, SimFix can produce all but one (29 out of 30) of
the correct patches it produces with SBFL, and all (16 out of
16) of the correct patches with Blues. Additionally, SimFix
with my FL implementations patches 10 defects that none of
14 state-of-the-art APR tools patch [43]. Finally, using Blues,
SimFix significantly outperforms iFixR, the state-of-the-art
IRFL-based APR tool [27], patching 19 out of 156 defects (7
correctly) while iFixR patches only 4 defects (3 correctly).

RQ2.3 How does the patch quality vary across the
new and old versions of Defects4] benchmark? Past
APR evaluations fail to generalize to new defects. For
example, SimFix correctly patches 3-6% (6% when using
SBFL, 3% Blues, 6% SBIR) of the defects in the older version
of Defects4], but only 1-2% (2% SBFL, 1% Blues, 2% SBIR)
of the new defects. Of the patches SimFix produces for the old
defects, 39-40% are correct; for the new defects, only 13—-19%
are correct.

These results show that improving FL can enable
APR tools to patch new defects without requiring any
changes to their core patch generation and validation
algorithms. A recent study [65] shows that the quality
of patches produced by some APR tools is more
sensitive to the accuracy of FL results they use than
others. Hence, I plan to extend my evaluation of using
improved fault localization to more sensitive APR tools.

C. Improving Test Suites

The developer-written tests are often inadequate [66] yet
they are used by most APR tools because the tests are
readily available and are machine-processable. Tests consist
of two parts, an input to trigger a behavior and an oracle
that indicates the expected behavior. While the state-of-the-
art automated test generation techniques (e.g., Randoop [67],
EvoSuite [68]) can effectively generate test inputs, they require
a reference implementation to compute oracles for the generated
inputs. In practice, a correct reference implementation may
not be available, thus, limiting the use of such test generation
techniques to improve the quality of APR tools. To address this,
I analyzed other software artifacts from which I can derive
the intended software behavior and improve the developer-
written tests, which are used by APR tools. While formal,
mathematical specifications that can be used automatically by
computers are rare, developers do write natural language (NL)
specifications, often structured (e.g., JavaDoc comments), as
part of software requirements specification documents. Hence,
in this thrust, I tackle the problem of automatically generating
tests from such structured NL specifications to verify that the
software does what the specifications say it should.



I developed Swami [69], a technique to automatically gener-
ate executable tests from structured NL specifications. I scoped
my work by focusing on exceptional and boundary behavior,
precisely the important-in-the-field behavior developers often
undertest [70], [71]. Swami uses regular expressions to
identify what sections of the specification document encode
testable behavior. Swami then applies a series of four regular-
expression-based rules to extract information about the syntax
for the methods to be tested, the relevant variable assignments,
and the conditionals that lead to visible oracle behavior,
such as return statements or exception throwing statements.
Swami then backtracks from the visible-behavior statements
to recursively fill in the variable value assignments according
to the specification, resulting in a test template encoding the
oracle, parameterized by test inputs. Swami then generates
random, heuristic-driven test inputs to produce executable tests.

Swami complements prior work (e.g, [67], [68]) on
automatically generating test inputs for regression tests or
manually-written oracles by automatically extracting oracles
from NL specifications. The closest work to Swami is
Toradacu [70] and Jdoctor [72], which focus on extracting
oracles for exceptional behavior, and @tComment [73], which
focuses on extracting preconditions related to nullness of
parameters. These techniques are limited to using Javadoc
comments, which are simpler than the specifications Swami
tackles. Swami builds on these techniques, expanding the rule-
based NL processing techniques to apply to more complex NL.
Additionally, unlike those techniques, Swami generates oracles
for boundary conditions along with exceptional behavior.

I evaluated Swami using ECMA-262, the official specifica-
tion of the JavaScript programming language [74], and two
well known JavaScript implementations: Java Rhino and C++
Node.js. I answered three research questions:

RQ3.1 How precise are Swami-generated tests? Of
the tests Swami generates, 60.3% are innocuous — they can
never fail. Of the remaining tests, 98.4% are precise to the
specification and only 1.6% might raise false alarms.

RQ3.2 Do Swami-generated tests cover behavior missed
by developer-written tests? Swami-generated tests identified
1 previously unknown defect and 15 missing JavaScript features
in Rhino, 1 previously unknown defect in Node.js, and 18
semantic ambiguities in the ECMA-262 specification. Further,
Swami generated tests for behavior uncovered by developer-
written tests for 12 Rhino methods. The average statement
coverage for these methods improved by 15.2% and the average
branch coverage improved by 19.3%.

RQ3.3 Do Swami-generated tests cover behavior missed
by state-of-the-art automated test generation tools? Com-
paring Swami tests to EvoSuite tests revealed that most of
the EvoSuite tests that cover exceptional behavior were false
alarms, whereas 98.4% of the Swami tests were precise to the
specification and can only result in true alarms. Augmenting
EvoSuite tests using Swami increased the statement coverage
of 47 classes by, on average, 19.5%. Swami also produced
fewer false alarms than Toradacu and Jdoctor, and, unlike those
tools, generated tests for missing features.

To study the effect of improved test suites on patch
quality, I plan to create a dataset of defects for which
Swami can be used to improve developer-written tests. I
will then perform controlled experiments on that dataset
using APR tools to patch those defects by using the
original and developer-written tests augmented with
Swami tests in the repair process.

J

D. Investigating the effect of improved fault localization and
test suites on patch quality.

This thrust aims to put together the improved fault localiza-
tion (FL) (Section II-B) and test suites (Section II-C), and then
use the proposed patch evaluation methodology (Section II-A)
to measure the repair success. I will first create a defect dataset
on which I can run different FL techniques, as well as improve
test suites using Swami. Next, I will select a representative set
of APR tools that are more sensitive to FL accuracy and use
them to patch the defects. Finally, I will study the individual
as well as the combined effect of improving FL and test suites
on the patch quality. I will answer three research questions:

RQ4.1 Does improving fault localization using SBIR
improves patch quality?

RQ4.2 Does improving test suites using Swami improves
patch quality?

RQ4.3 Does improving both fault localization and test
suites improve patch quality?

III. EXPECTED CONTRIBUTIONS AND TIMELINE

My dissertation will make the following contributions that
will extend the state-of-the-art of APR along with other closely
related fields. I plan to release all of the data and tools
developed as part of my dissertation as freely available and
reusable open-source software.

1) An APR quality evaluation framework that provides
an automated and objective methodology to evaluate
patch quality and allows APR tools to use multiple fault
localization (FL) techniques in the repair process.

2) JaRFly', the Java Repair Framework, which simplifies the
implementation of Java techniques for genetic improve-
ment including but not limited to genetic improvement
techniques for APR.

3) RAFL, an unsupervised learning-based approach to
improve the FL accuracy by combining results of multiple
FL techniques that use different information sources.

4) Blues, the first unsupervised learning-based statement-
level IRFL technique that can be used by the APR tools
to localize and patch defects using bug reports.

5) Swami?, a novel approach to generate tests with oracles
from structured natural language software specifications
for exceptional behavior and boundary conditions.

I am currently working on the fourth thrust (Section II-D)

and I plan to finish all of my dissertation work by late 2021.

Thttp://jarfly.cs.umass.edu
Zhttp://swami.cs.umass.edu
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