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ABSTRACT

HIGH-QUALITY AUTOMATIC PROGRAM REPAIR

MAY 2021

MANISH MOTWANI

B.S., IIIT HYDERABAD

M.S., UNIVERSITY OF MASSACHUSSETTS AMHERST

Directed by: Professor Yuriy Brun

A significant fraction of developers’ time and effort is spent on fixing defects in the

software. Automatic Program Repair is a research area that has recently gained attention

because it proposes techniques to fix software defects with minimal or without any human

intervention. While existing repair techniques can fix a large number of defects in real-world

software, most of the repairs produced are not correct or acceptable to developers.

Whether manual or automated, software repair is essentially a three step process. The

first step involves identifying program elements that cause the defect (fault localization).

The second step involves identifying modifications to the defective program elements which

would fix the defect (patch generation). Finally, the third step involves verifying that the

modified program actually fixes the defect (patch validation). Recent studies have shown

that using information about the defect from various sources including natural-language

software artifacts such as bug reports can significantly improve automated fault localization.

Similarly, using artifacts such as software specifications and developer-written code com-

ments can improve developer-written tests which are typically used to constraint the search
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space of the candidate patches (during patch generation) and to verify the correctness of the

produced repair (during patch validation) by automated program repair techniques.

In this dissertation, we first describe how to objectively evaluate repair techniques along

the dimensions of repair quality and repair applicability, and present the evaluation of these

techniques for each dimension on real-world defects. We then propose multiple methods

to improve fault localization and patch validation steps of the program repair process to

improve the quality of the repairs produced. The proposed methods use machine learning

techniques to transform relevant information extracted from different information sources

into machine-processable form, and equip program repair techniques with this additional

information during the repair process. With improved fault localization and patch validation,

the search space of candidate patches could be more constrained which would likely improve

the quality of repairs produced.
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INTRODUCTION

The global cost of software debugging has risen to $312 billion annually, and a significant

amount of developers’ time is spent on debugging and repairing software defects [58, 186].

Automated program repair research (e.g., [16,27,29,36,37,77,86,87,88,92,103,106,107,112,

147, 168, 172, 173, 193, 195]) aims to address this problem by devising techniques that can

automatically produce software patches to fix defects with minimal or without requiring

any human intervention. For example, Facebook uses two automated program repair tools,

SapFix and Getafix, in their production pipeline to suggest bug fixes [108, 157]. The goal

of automated program repair techniques is to take a program and a suite of tests, some

of which that program passes and some of which it fails, and to produce a patch that

makes the program pass all the tests in that suite. Unfortunately, these patches can repair

some functionality encoded by the tests, while simultaneously breaking other, undertested

functionality [163]. Thus, quality of the resulting patches is a critical concern. Recent results

suggest that patch overfitting — patches that pass a particular set of test cases supplied to

the program repair tool but fail to generalize to the desired specification — is common [89,

105,137,163].

Most of the state-of-the-art program repair techniques use developer-written tests to:

(a) localize the defect typically using spectrum-based fault localization techniques which use

the runtime information of passing and failing tests to localize the defective program ele-

ments, and (b) generate and validate the automatically produced candidate patches based on

the constraints imposed by the tests. While test suites provide an easy-to-use (because they

are executable) specification, software typically contains many more artifacts that describe

the desired correct software behaviour. Many of these artifacts such as requirements specifi-

cations, code comments, and bug reports use natural-language text to describe the bug and
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intended software behavior, and are therefore not directly used in the repair process. We

hypothesize that if we can derive executable constraints from such artifacts and equip repair

techniques with these additional constraints, it could further constraint the search space of

the candidate patches and would improve the quality of patches produced. The central goal

of this work is to test this hypothesis.

We propose a natural-language processing based approach that can automatically extract

executable tests with precise oracles from structured natural language software specifications.

The generated tests cover code which are previously not covered by the developer-written

tests. The developer-written tests when augmented with these automatically generated tests

would sharpen the constraints on the search space of the candidate patches and therefore

will improve the patch generation and patch validation steps. We also propose a method to

improve the fault localization by using machine learning techniques to combine 10 different

fault localization techniques that use six different sources of information about defect to

identify the program elements that cause that defect. Finally, we propose multiple ways in

which we can integrate the improved fault localization and patch validation in the automated

program repair process.

The rest of this proposal is structured as follows. Chapter 1 describes the background

on automated program repair, the program repair process, and open challenges in the auto-

mated program repair research area. Chapter 2 describes ways to objectively evaluate the

repair techniques along the dimensions of repair applicability and repair quality, presents

the evaluation of program repair techniques along these dimensions on real-world defects,

and describes the key findings and research problem that motivate this dissertation. Chap-

ter 3 proposes a method to automatically generate executable tests from structured natural-

language software specifications. Chapter 4 proposes a method to combine multiple fault

localization techniques to improve the fault localization. Chapter 5 describes two methods to

integrate the improved fault-localization and patch validation in automated program repair

process. Chapter 6 places this work in the context of related research. Chapter 7 describes

2



the research plan with timeline and potential risks along with contingency plan. Chapter 8

summarizes proposed contributions.
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CHAPTER 1

AUTOMATED PROGRAM REPAIR

1.1 Introduction

The goal of automated program repair techniques is to take a program and a suite of tests,

some of which that program passes and some of which it fails, and to produce a patch that

makes the program pass all the tests in that suite. This chapter describes some background

on automated program repair techniques. The remaining of this chapter is organized as

follows. Section 1.2 describes the program repair process, Section 1.3 describes types of

program repair techniques, and Section 1.4 lists the current open challenges in the field of

automated program repair.

1.2 Automated Program Repair Process

Figure 1.1 shows the high-level program repair process which can be broken down into

following three steps.

1. Fault localization: The goal of fault localization is to identify defective program

elements that cause the software defect. Automated fault localization typically uses

static and run-time information about the program to identify program elements that

may be the root cause of the defect. Chapter 4 describes this in more detail.

2. Patch generation: This is the core algorithm of the program repair technique. Differ-

ent techniques use different algorithms to produce patches to fix the defect. Section 1.3

describes these techniques in more detail.
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3. Patch validation: This involves modifying a buggy program by applying the auto-

matically produced patch and validating its correctness against the developer-written

test suite. If the patched program passes all the tests, the corresponding patch is

reported as a plausible patch (patch that passes at least all tests used in the repair

process). It is important to note that a plausible patch may overfit to the tests and

hence may not necessarily be a correct patch. Chapter 2 describes this in more detail.

b b b

buggy program

fault
localization

patch
generation patch

validation

all tests pass

some tests fail

patched program
candidate patches

localized program elements
failing some tests passing all tests

Figure 1.1. Three-step process of program repair. The first step (fault localization) involves
identifying source code elements that could be potentially buggy, the second step (patch
generation) involves producing a patch (program modification) that can be applied to the
buggy part of the program, and the third step (patch validation) involves patching the buggy
program with a candidate patch and validating it against the test suite. If all tests pass, the
patched program is reported as a repair and the process terminates otherwise, an attempt
is made to produce new patch until the search space is exhausted or a timeout occurs.

1.3 Types of Program Repair Techniques

Based on the underlying repair approach, program repair techniques can be classified into

two categories: search-based techniques and semantics-based techniques. The ideas proposed

in this dissertation are applicable to both classes of techniques.

1.3.1 Search-based Repair Techniques

Search-based techniques use certain heuristics or predefined templates to generate many

syntactic candidate patches, validating them against the tests (e.g., GenProg [92], Prophet

5



[106], AE [183], HDRepair [88], ErrDoc [172], JAID [27], Qlose [36], and Par [77], among

others).

Techniques such as DeepFix [62] and ELIXIR [153] use learned models to predict erro-

neous program locations along with patches. ssFix [193] uses existing code that is syntacti-

cally related to the context of a defect to produce patches. CapGen [187] works at the AST

node level (token-level) and uses context and dependency similarity (instead of semantic sim-

ilarity) between the suspicious code fragment and the candidate code snippets to produce

patches. To manage the large search space of candidates created because of using finer-level

granularity, it extracts context information from candidate code snippets and prioritizes the

mutation operators considering the extracted context information. SimFix [71] considers

the variable name and method name similarity in addition to the structural similarity be-

tween the suspicious code and candidate code snippets. Similar to CapGen, it prioritizes

the candidate modifications by removing the ones that are found less frequently in existing

patches. Hercules [154] generalizes single-location program repair techniques to defects that

require similar edits be made in multiple locations. Enforcing that a patch keeps a program

semantically similar to the buggy version by ensuring that user-specified correct traces exe-

cute properly on the patched version can repair reactive programs with linear temporal logic

specifications [174].

Several repair approaches have aimed to reduce syntactic or semantic differences between

the buggy and patched program e.g., [36, 71, 76, 87, 111, 174, 187], with a goal of improving

patch quality. For example, Qlose [36] minimizes a combination of syntactic and semantic

differences between the buggy and patched programs while generating candidate patches.

SketchFix [68] optimizes the candidate patch generation and evaluation by translating faulty

programs to sketches (partial programs with holes) and lazily initializing the candidates of

the sketches while validating them against the test execution. SOFix [98] uses 13 predefined

repair templates to generate candidate patches. These repair templates are created based on

the repair patterns mined from StackOverflow posts by comparing code samples in questions
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and answers for fine-grained modifications. SapFix [108] and Getafix [157], two tools deployed

on production code at Facebook, efficiently produce repairs for large real-world programs.

SapFix [108] uses prioritized repair strategies, including pre-defined fix templates, mutation

operators, and bug-triggering change reverting, to produce repairs in realtime. Getafix [157]

learns fix patterns from past code changes to suggest repairs for bugs that are found by Infer,

Facebook’s in-house static analysis tool.

1.3.2 Semantics-based Repair Techniques

Semantics-based techniques use constraint solving and program synthesis to synthesize

patches to satisfy semantics constraints extracted via symbolic execution and provided test

suites (e.g., Nopol [195], Semfix [124], DirectFix [111], Angelix [112], S3 [87], JFIX [86]). Sem-

Graft [110] infers specifications by symbolically analyzing a correct reference implementation

(as opposed to using test cases). Genesis [103], Refazer [147], NoFAQ [37], Sarfgen [178], and

Clara [61] process correct patches to automatically infer code transformations to generate

patches, a problem conceptually related to our challenge in integrating repair snippets to a

new context.

SearchRepair [76] combines these classes, using a constraint solver to identify existing

code to construct repairs. SOSRepair [5], builds on SearchRepair by fundamentally improv-

ing the approach in several important ways. It is significantly more expressive (handling

code constructs used in real code and reasoning about snippets that can affect multiple

variables as output) and scalable (SearchRepair could only handle small, student-written C

programs), supports deletion and insertion, uses failing test cases to restrict the search space,

repairs code without passing examples, and its encoding of the repair query is significantly

more expressive and efficient.
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1.4 Open Challenges

This section describes the current open challenges in the automated program repair re-

search area identified in recent studies [54, 59]. Following are the three high-level open

challenges that summarize various challenges listed in these works.

1. Fix Correctness/Quality Challenge: This involves increasing the chance that a

repair technique provides a correct fix that is easy to understand and maintain in the

long term. Addressing this challenge is perhaps the most important step toward real-

life adoption of program repair. Although it might be infeasible to produce fixes that

are guaranteed to satisfy the developers expectations, finding methods to generate and

evaluate fixes that are likely acceptable by developers is an open problem.

2. Scope/Technical Challenge: This involves extending the applicability of the state-

of-the-art repair techniques to the kinds of bugs which it cannot repair. There are

various aspects to addressing this challenge such as how to evaluate the applicability

given so many independent studies of multiple repair techniques which are still scat-

tered and difficult to be synthesized into a clear picture, and how to improve the design

of the repair techniques to enable them to fix more complex defects.

3. Process Challenge: This involves integrating repair tools into development processes

ensuring reliability and without disrupting the development process significantly. This

includes challenges such as how to design repair techniques that fix programs without

negatively affecting the maintainability of software, and how to integrate repair tools

with defect detection tools such as compilers or integrated development environments’

(IDEs) debugging components.

In this dissertation, we propose multiple method to address the Fix Correctness/Quality

Challenge and one of the aspects of Scope/Technical Challenge.
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CHAPTER 2

PROBLEMS IN AUTOMATED PROGRAM REPAIR

2.1 Introduction

Existing evaluations of automated repair techniques focus on the fraction of the defects

for which the technique can produce a patch, the time needed to produce patches, and how

well patches generalize to the intended specification. However, all these evaluations use dif-

ferent benchmarks and techniques which prevents us from determining the clear picture of

whether automated repair techniques are capable of repairing defects that developers con-

sider important or that are hard for developers to repair manually. Further, the existing

evaluations of patch correctness use manual inspection of automatically generated patches

which is likely to be biased. In this dissertation, we propose an objective evaluation frame-

work to evaluate repair techniques along the dimensions of repair applicability and repair

quality. We perform a large scale evaluation of the state-of-the-art repair techniques using

our evaluation framework on real-world defects.

The remaining of this chapter is organized as follows. Section 2.2 describes the objective

way to evaluate the applicability of repair techniques and the key findings from this study,

Section 2.3 describes the objective way to evaluate the quality of repair techniques and the

evaluation of search-based (generate-and-validate) repair techniques, Section 2.4 describes

the key findings of evaluating the quality of SOSRepair, a novel semantics-based repair

technique which builds upon an existing technique that is able to produce high-quality

patches, and Section 2.5 describes the key observations reconciled from all these evaluations

that motivates us to pose the research question we wish to investigate in this dissertation.
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2.2 Applicability of Program Repair Techniques

Automated program repair techniques use a defective program and a partial specification

(typically a test suite) to produce a patch (program modification) which when applied to

the defective program, it produces a program variant that satisfies the specification. While

prior work has studied patch quality [137,163] and maintainability [52], it has not examined

whether automated repair techniques are capable of repairing defects that developers consider

important or that are hard for developers to repair manually. We perform a study to tackle

such questions.

2.2.1 Approach

Our study considers nine automated repair techniques for C and Java: AE [183], Gen-

Prog [185], a Java reimplementation of GenProg [109], Kali [137], a Java reimplementation

of Kali [109], Nopol [38], Prophet [106], SPR [104], and TrpAutoRepair [136].

We analyze popular bug tracking systems and source code repositories to identify pa-

rameters relevant to defect importance, independence, and complexity, and test ef-

fectiveness. We compute these parameters for two benchmarks of defects often used to

evaluate automated program repair, ManyBugs [91] (185 C defects) and Defects4J [74] (357

Java defects). We further analyze developer-written patches for these defects to identify

characteristics of those patches that may influence automated repair. Finally, to evaluate

the applicability of of repair techniques, we run statistical tests to compute the association

between these parameters and the ability to repair defects of repair techniques.

2.2.2 Research Questions

Our study answers the following questions: Is a repair technique’s ability to produce

a patch for a defect correlated with that defect’s (RQ1) importance, (RQ2) complexity,

(RQ3) effectiveness of the test suite, or (RQ4) dependence on other defects? (RQ5) What

characteristics of the developer-written patch are significantly associated with a repair tech-
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nique’s ability to produce a patch? And, (RQ6) what defect characteristics are significantly

associated with a repair technique’s ability to produce a high-quality patch?

2.2.3 Findings

We find that (RQ1) Java repair techniques are moderately more likely to patch higher-

priority defects; for C, there is no correlation. There is little to no consistent correlation

between producing a patch and the time taken by developer(s) to fix the defect, as well as

the number of software versions affected by that defect. (RQ2) C repair techniques are less

likely to patch defects that required developers to write more lines of code and edit more

files. (RQ3) Java repair techniques are less likely to patch defects with more triggering or

more relevant tests. Test suite statement coverage has little to no consistent correlation

with producing a patch. (RQ4) Java repair techniques’ ability to patch a defect does not

correlate with that defect’s dependence on other defects. (RQ5) Repair techniques struggle

to produce patches for defects that required developers to insert loops or new function calls,

or change method signatures. Finally, (RQ6) only two of the considered repair techniques,

Prophet and SPR, produce a sufficient number of high-quality patches to evaluate. These

techniques were less likely to patch more complex defects, and they were even less likely to

patch them correctly.

2.2.4 Contributions

The main contributions of this study are:

• The publicly-released annotation of 409 defects in ManyBugs and Defects4J, to be used

for evaluating automated repair applicability.

• A methodology for evaluating the applicability of repair techniques, with the goal of

encouraging research to focus on important and hard defects.

• The evaluation of nine automated program repair techniques’ applicability to 409

ManyBugs and Defects4J defects.

11



The full version of this study [121] can be found at

http://dx.doi.org/10.1007/s10664-017-9550-0.

2.3 Quality of Generate-and-Validate Repair Techniques

While it is less likely for repair techniques to fix hard or complex bugs as described in

the findings of the previous section, even for the relatively less complex bugs, the quality of

patches produced by many automated program repair techniques are often of low quality [163]

and not semantically equivalent to developer-written patches [137]. This both raises an

important concern about the practical usability of modern automated repair techniques,

and drives research toward building techniques that produce higher-quality patches [76,104,

106,112].

Automated program repair techniques typically start with a program version and a set

of passing and failing tests, and then modify the program version until finding a set of

modifications (a patch) that makes all the tests pass. The underlying issue is that the set of

tests provides a partial specification of the desired behavior, and thus the produced patches

may overfit to those tests. For example, while, typically, many patches in a technique’s

search space pass the supplied tests, relatively few are equivalent to the developer-written

patch [106,137]; the automated repair technique has no way of knowing which is the better

patch to return.

Prior work introduced an objective methodology for evaluating the quality of a patch [163]

and was successfully applied to a set of very small programs written by novice developers

in an introductory programming course [163]. While that work identified important short-

comings of automated program repair techniques, its results may not generalize beyond the

very small and simple programs. That study only considered two generate-and-validate re-

pair techniques, did not control for confounding factors, and used test suite size as a proxy

for coverage. By contrast, we perform a detailed large-scale study with four generate-and-

validate repair techniques on 357 real-world defects in five real-world, large, complex projects
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from the Defects4J benchmark [74] employing rigorous statistical analyses, properly measur-

ing coverage, and controlling for confounding factors.

2.3.1 Approach

Our methodology for measuring patch quality relies on an independent test suite that is

not given to the repair technique to produce a patch. The independent test suite captures

(again, partially) some of the specifications not captured by the original test suite given to the

repair technique, and thus its passing rate independently evaluates the quality of the patch.

We generate these independent test suite using state-of-the-art automated test generation

tools which can generate tests from a given source code. For the defect benchmarks that

are used to evaluate repair techniques, we have a defective and developer–patched version

of the program. We use human-patched version of the program to generate the independent

test suite considering the developer–patched version as the oracle. Further, we ensure that

independent test suite is of high–quality by making sure that it has 100% statement coverage

on the buggy method (or developer–modified method) and atleast 80% statement covarege

on the buggy class (or developer–modified class). The alternative to this methodology is a

manual inspection of the patch, (e.g., [137]), but two independent recent studies [85, 197]

have empirically demonstrated that our independent-test-suite-based methodology is more

reliable and more objective than manual inspection.

2.3.2 Research Questions

Our study answers following research questions: (RQ1) Do generate-and-validate repair

techniques produce patches for real-world defects?, (RQ2) How often and how much do

the patches produced by generate-and-validate repair techniques overfit to the developer-

written test suite and fail to generalize to the evaluation test suite, and thus ultimately to

the program specification?, (RQ3) How do the coverage and size of the test suite used to

produce the patch affect patch quality?, (RQ4) How does the number of tests that a buggy

program fails affect the degree to which the generated patches overfit?, (RQ5) How does
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the test suite provenance (whether it is written by developers or generated automatically)

influence patch quality?, and (RQ6) Can overfitting be mitigated by exploiting randomness

in the repair process? Do different random seeds overfit in different ways?

2.3.3 Findings

We find that (RQ1) Repair techniques produce patches for real-world defects although

less often for Java defects than for C defects. (RQ2) Repair techniques often overfit to

the developer-written test suite. Only between 13.8% and 41.6% of the patches pass 100%

of an independent test suite. Comparing the patched version against the buggy version

of the program reveals that patches typically break more functionality than they repair.

(RQ3) Larger test suites produce slightly higher-quality patches, though, surprisingly, the

effect is extremely small. Also surprisingly, there is no clear relationship between higher-

coverage test suites and quality. (RQ4) More number of failing tests leads to slightly higher-

quality patches. Spectrum-based fault localization gets significantly affected by the failing

tests preventing some of the repair techniques to produce any patch. (RQ5) Test suite

provenance has a significant effect on repair quality, although the effect may differ for different

techniques. In most cases, human-written tests lead to higher-quality patches. (RQ6) The

patches exhibit insufficient diversity to improve quality through some method of combining

multiple patches.

Prior studies of quality of automated program repair have either used manual inspection

for quality assessment [131,163,182], or have focused on small programs and relatively-easy-

to-fix defects [163,197]. Some studies did use a 224-defect subset of the same benchmark of

real-world programs we use, but used manual inspection for quality assessment and, unlike

our work, assessed tools’ ability to produce patches and efficiency of patch production, but

did not identify the factors that affect patch quality (RQs 3–6) [42,109].

Employing the objective, independent-test-suite-based evaluation of patch quality, re-

quires the creation of high-quality, automatically-generated test suites for real-world Java
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projects. In this study, we develop a methodology for using today’s state-of-the-art test-suite

generation techniques and overcoming their shortcomings to produce high-quality suites. We

release both the methodology and the generated test suites.

2.3.4 Contributions

The main contributions of this study are:

• An empirical evaluation of quality of program repair on real-world Java defects, which

outlines shortcomings and establishes a methodology and dataset for evaluating quality

of new repair techniques’ patches on real-world defects to promote research on high-

quality repair.

• A methodology for evaluating patch quality that fixes numerous shortcomings in prior

work, properly controlling for potential confounding factors.

• A dataset of independent evaluation test suites for Defects4J defects, and a methodol-

ogy for generating such test suites. Augmenting existing Defects4J defects with two,

independently created test suites can aid not only program repair, but other test-based

technology.

• Java Repair Framework (http://JaRFly.cs.umass.edu/), a publicly released, open-

source framework for building Java generate-and-validate repair techniques, including

our reimplementations of GenProg [90], Par [77], and TrpAutoRepair [136]. JaRFly

allows for easy combinations and modifications to existing techniques, and simplifies

experimental design for automated program repair on Java programs.

This work is under review in IEEE Transactions on Software Engineering (TSE).

2.4 Quality of Semantics-Based Repair Techniques

In this study, we also evaluate the quality of semantics-based repair techniques which

use constraint solving and program synthesis to synthesize patches to satisfy semantics con-
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straints extracted via symbolic execution and provided test suites (recall Chapter 1, Sec-

tion 1.3).

2.4.1 Approach

We design a novel repair technique called SOSRepair which builds on the underlying

principles of SearchRepair [76], a semantics-based repair technique which is able to pro-

duce high-quality patches (patches passed 97.3% of independent tests not used during patch

construction) for bugs in small 24-line student-written programs but could not be run on

large programs. We fundamentally redesign SearchRepair to create SOSRepair which is able

to produce patches for real-world defects in large programs hypothesizing that SOSRepair

would produce high-quality patches for large programs. We use our patch quality evalua-

tion methodology described in Section 2.3 to evaluate the quality of the patches produced

by SOSRepair for 65 real-world defects of 7 large open-source projects from the ManyBugs

defect benchmark [91].

2.4.2 Findings

We found that SOSRepair was able to patch 22 (34%) of the 65 defects including 1

which was not patched by prior techniques however, the quality of the SOSRepair was

comparable to prior techniques (Angelix [112], Prophet [106], and GenProg [92]) and was

the same as obtained using SearchRepair on small programs. Table 2.1 shows the average

patch-quality of SOSRepair (indicated by SOS) and SOSRepair provided with fault location

(indicated by SOS+) compared to existing state-of-the-art repair techniques. The values

describe the average of the fraction of independently generated evaluation test suites passed

by the patched program for commonly patched defects by a given pair of techniques. We also

found that fault localization is a key factor in SOSRepair’s success. Manually improving fault

localization enabled SOSRepair to patch more defects and also produce more higher-quality

patches.

16



Existing Technique SOS SOS+ #Commonly Patched Defects
Angelix (94.10) 84.22 9
Angelix (96.43) 99.29 7
Prophet (88.42) 81.50 11
Prophet (88.50) 93.42 12

GenProg (65.00) 88.00 16
GenProg (56.21) 95.50 14

Table 2.1. Comparison of average patch-quality of SOSRepair(SOS) and SOSRepair pro-
vided with fault location (SOS+) with other state-of-the-art repair techniques.

2.4.3 Contributions

To make SOSRepair possible, we make five major contributions to both semantic code

search and program repair:

1. A more-scalable semantic search query encoding. We develop a novel, efficient,

general mechanism for encoding semantic search queries for program repair, inspired by

input-output component-based program synthesis [69]. This encoding efficiently maps

the candidate fix code to the buggy context using a single query over an arbitrary

number of tests. By contrast, SearchRepair [76] required multiple queries to cover

all test profiles and failed to scale to large code databases or queries covering many

possible permutations of variable mappings. Our new encoding approach provides a

significant speedup over the prior approach, and we show that the speedup grows with

query complexity.

2. Expressive encoding capturing real-world program behavior. To apply seman-

tic search to real-world programs, we extend the state-of-the-art constraint encoding

mechanism to handle real-world C language constructs and behavior, including structs,

pointers, multiple output variable assignments, console output, loops, and library calls.
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3. Search for patches that insert and delete code. Prior semantic-search-based

repair could only replace buggy code with candidate fix code to affect repairs [76]. We

extend the search technique to encode deletion and insertion.

4. Automated, iterative search query refinement encoding negative behavior.

We extend the semantic search approach to include negative behavioral examples,

making use of that additional information to refine queries. We also propose a novel,

iterative, counter-example-guided search-query refinement approach to repair buggy

regions that are not covered by the passing test cases. When our approach encounters

candidate fix code that fails to repair the program, it generates new undesired behavior

constraints from the new failing executions and refines the search query, reducing the

search space. This improves on prior work, which could not repair buggy regions that

no passing test cases execute [76].

5. Evaluation and open-source implementation. We implement and release SOSRe-

pair (https://github.com/squaresLab/SOSRepair), which reifies the above mecha-

nisms. We evaluate SOSRepair on the ManyBugs benchmark [91] commonly used in

the assessment of automatic patch generation tools (e.g., [106, 112, 136, 183]). These

programs are four orders of magnitude larger than the benchmarks previously used

to evaluate semantic-search-based repair [76]. We show that, as compared to previ-

ous techniques applied to these benchmarks (Angelix [112], Prophet [106], and Gen-

Prog [92]), SOSRepair patches one defect none of those techniques patch, and pro-

duces patches of comparable quality to those techniques. We measure quality objec-

tively, using independent test suites held out from patch generation [163]. We there-

fore also release independently-generated held-out test suites (https://github.com/

squaresLab/SOSRepair-Replication-Package) for the defects we use to evaluate

SOSRepair.
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The full version of this study [5] can be found at

http://dx.doi.org/10.1109/TSE.2019.2944914.

2.5 Key Findings and Research Question

Following are the key observations made from all of the above described evaluations of

automated repair techniques.

1. Automated program repair techniques are less likely to patch more complex defects,

and they are even less likely to patch them correctly (Section 2.2).

2. Repair techniques often overfit to the developer-written test suite. Patches typically

break more functionality than they repair (Section 2.3).

3. Spectrum-based fault localization gets significantly affected by the failing tests pre-

venting some repair techniques to produce any patch (Section 2.3).

4. Fault localization is a key factor in SOSRepair’s success. Manually improving fault

localization enabled SOSRepair to patch more defects and also produce more higher-

quality patches (Section 2.4).

These key findings suggest that fault localization and developer-written test suites used

to guide the repair significantly affect the quality of the repair produced by program repair

techniques. Based on this, we ask the following research question which directs the remain-

der of the research work proposed in this dissertation.

Research Question: Does improvement in fault localization and test-suites used to guide

the repair process improve the quality of the patches produced by repair techniques?
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CHAPTER 3

IMPROVING PATCH VALIDATION

3.1 Introduction

One of the key steps in the program repair process is verifying that the patched program

does what developer want it to do (recall Section 1.2 in Chapter 1). Unfortunately, the most

common way humans describe and specify software is natural language, which is difficult to

formalize, and thus also difficult to use in an automated process as an oracle of what the

software should do. Hence, repair techniques use developer-written test suites as a proxy for

software specification.

In this chapter, we propose an approach to automatically generate tests from natural

language specifications which can be used to verify that the software does what the spec-

ifications say it should. Tests consist of two parts, an input to trigger a behavior and an

oracle that indicates the expected behavior. Oracles encode intent and are traditionally

specified manually, which is time consuming and error prone. While formal, mathematical

specifications that can be used automatically by computers are rare, developers do write

natural language specifications, often structured, as part of software requirements specifica-

tion documents. For example, Figure 3.1 shows a structured, natural language specification

of a JavaScript Array(len) constructor (part of the official JavaScript specification ECMA-262

standard [188]) to be implemented in JavaScript engines. The proposed approach focuses

on generating oracles from such structured natural language specifications (test inputs can

often be effectively generated randomly [50, 127], and together with the oracles, produce

executable tests).
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15.4.2.2            new Array (len)

The  [[Prototype]]  internal  property  of  the  newly  constructed  object  is  set  to  the 
original Array  prototype  object,  the  one  that  is  the  initial  value  of 
Array.prototype (15.4.3.1). The  [[Class]]  internal  property  of  the  newly
constructed  object  is  set  to  "Array".  The [[Extensible]]  internal  property  of  the 
newly constructed object is set to true.

If  the  argument  len is  a  Number  and ToUint32(len) is  equal  to  len,  then  the length 
property of  the  newly  constructed  object  is  set  to ToUint32(len).  If  the argument  len 
is  a  Number and ToUint32(len) is not equal to len, a RangeError exception is thrown.

If the  argument len is  not  a  Number,  then  the  length property  of  the  newly 
constructed object is  set  to  1 and  the  0 property  of  the  newly  constructed 
object  is  set  to len with attributes  {[[Writable]]:  true,  [[Enumerable]]:  true, 
[[Configurable]]: true}.
https://www.ecma-international.org/ecma-262/5.1/#sec-15.4.2.2

Figure 3.1. Section 15.4.2.2 of ECMA-262 (v5.1), specifying the JavaScript Array(len) con-
structor.

Of particular interest is generating tests for exceptional behavior and boundary conditions

because, while developers spend significant time writing tests manually [9, 142], they often

fail to write tests for such behavior. In a study of ten popular, well-tested, open-source

projects, the coverage of exception handling statements lagged significantly behind overall

statement coverage [57]. For example, Developers often focus on the common behavior when

writing tests and forget to account for exceptional or boundary cases [9]. At the same

time, exceptional behavior is an integral part of the software as important as the common

behavior. An IBM study found that up to two thirds of production code may be devoted to

exceptional behavior handling [32]. And exceptional behavior is often more complex (and

thus more buggy) because anticipating all the ways things may go wrong, and recovering

when things do go wrong, is inherently hard. Finally, exceptional behavior is often the cause

of field failures [184], and thus warrants high-quality testing.

We present Swami, a technique for automatically generating executable tests from nat-

ural language specifications. We scope our work by focusing on exceptional and boundary

behavior, precisely the important-in-the-field behavior developers often undertest [57,184].
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Figure 3.2. Swami generates tests by applying a series of regular expressions to processed
(e.g., tagged with parts of speech) natural language specifications, discarding non-matching
sentences. Swami does not require access to the source code; however, Swami can optionally
use the code to identify relevant specifications. Swami’s output is executable tests with
oracles and test templates that can be instantiated to generate more tests.

3.2 Proposed Approach

Figure 3.2 shows Swami approach. It takes as input a specification document that has

hundreds of pages and specifications. Swami uses regular expressions to identify what sec-

tions of structured natural language specifications encode testable behavior. (While not

required, if the source code is available, Swami can also use information retrieval techniques

to identify such sections.) Swami then applies a series of four regular-expression-based rules

to extract information about the syntax for the methods to be tested, the relevant variable

assignments, and the conditionals that lead to visible oracle behavior, such as return state-
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1 /* ABSTRACT FUNCTIONS */

2 function ToUint32(argument){

3 var number = Number(argument)

4 if (Object.is(number , NaN) || number == 0 ||

5 number == Infinity || number == -Infinity ||

6 number == +0 || number == -0){

7 return 0

8 }

9 var i = Math.floor(Math.abs(number))

10 var int32bit = i%(Math.pow(2,32))

11 return int32bit

12 }

13 ...

14 /*TEST TEMPLATE GENERATED AUTOMATICALLY */

15 function test_new_array(len){

16 if (typeof(len)=="number" && (ToUint32(len)!=len)){

17 try{

18 var output = new Array ( len );

19 }catch(e){

20 new TestCase("array_len", "array_len",

21 true , eval(e instanceof RangeError))

22 test();

23 }

24 }

25 }

26 /*TESTS GENERATED AUTOMATICALLY */

27 test_new_array (1.1825863363010669e+308);

28 test_new_array(null);

29 test_new_array (-747);

30 test_new_array (368);

31 test_new_array(false);

32 test_new_array(true);

33 test_new_array("V7KO08H");

34 test_new_array(Infinity);

35 test_new_array(undefined);

36 test_new_array (/[^.]+/);

37 test_new_array (+0);

38 test_new_array(NaN);

39 test_new_array (-0);

40 ...

Figure 3.3. The executable tests automatically generated for the Array(len) constructor from
the specification in Figure 3.1.

ments or exception throwing statements. Swami then backtracks from the visible-behavior

statements to recursively fill in the variable value assignments according to the specification,

resulting in a test template encoding the oracle, parameterized by test inputs. Swami then

generates random, heuristic-driven test inputs to produce executable tests. Figure 3.3 shows

automatically generated executable tests for the Array(len) constructor from the specification

in Figure 3.1

Using natural language specifications pose numerous challenges. Consider the ECMA-262

specification of a JavaScript Array(len) constructor in Figure 3.1. The specification:
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9.6                             ToUint32: (Unsigned 32 Bit Integer)

1. Let number be the result of calling ToNumber on the input argument.
2. If number is NaN, +0, −0, +∞, or −∞, return +0.
3. Let posInt be sign(number) × floor(abs(number)).
4. Let int32bit be posInt modulo2    ; that is, a finite integer value k of Number type with

5. Return int32bit.

The abstract operation ToUint32 converts its argument to one of 232 integer values in the 
range 0 through 232−1, inclusive. This abstraction operation functions as follows:

32
positive sign and less than 2 32 in magnitude such that the mathematical difference of 
posInt and k is mathematically an integer multiple of 232.

https://www.ecma-international.org/ecma-262/5.1/index.html#sec-9.6

Figure 3.4. ECMA specifications include references to abstract operations, which are for-
mally defined elsewhere in the specification document, but have no public interface. Sec-
tion 9.6 of ECMA-262 (v5.1) specifies the abstract operation ToUnit32, referenced in the spec-
ification in Figure 3.1.

• Uses natural language, such as “If the argument len is a Number and ToUint32(len)

is equal to len, then the length property of the newly constructed object is set to

ToUint32(len).”

• Refers to abstract operations defined elsewhere in the specification, such as ToUint32,

which is defined in section 9.6 of the specification (Figure 3.4).

• Refers to implicit operations not formally defined by the specification, such as min, max,

is not equal to, is set to, is an element of, and is greater than.

• Describes complex control flow, such as conditionals, using the outputs of abstract and

implicit operations in other downstream operations and conditionals.

3.3 Evaluation

We evaluate Swami using ECMA-262, the official specification of the JavaScript program-

ming language [188], and two well known JavaScript implementations: Java Rhino and C++

Node.js built on Chrome’s V8 JavaScript engine. We find that:
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• Of the tests Swami generates, 60.3% are innocuous — they can never fail. Of the

remaining tests, 98.4% are precise to the specification and only 1.6% are flawed and

might raise false alarms.

• Swami generates tests that are complementary to developer-written tests. Our gener-

ated tests improved the coverage of the Rhino developer-written test suite and iden-

tified 1 previously unknown defect and 15 missing JavaScript features in Rhino, 1

previously unknown defect in Node.js, and 18 semantic ambiguities in the ECMA-262

specification.

• Swami also outperforms and complements state-of-the-art automated test generation

techniques. Most tests generated by EvoSuite (which does not automatically extract

oracles) that cover exceptional behavior are false alarms, whereas 98.4% of Swami-

generated tests are correct tests that cannot result in false alarms. Augmenting

EvoSuite-generated tests using Swami increased the statement coverage of 47 Rhino

classes by, on average, 19.5%. Swami also produced fewer false alarms than Toradacu

and Jdoctor, and, unlike those tools, generated tests for missing features.

While Swami’s regular-expression-based approach is rather rigid, it performs remarkably

well in practice for exceptional and boundary behavior. It forms both a useful tool for gen-

erating tests for such behavior, and a baseline for further research into improving automated

oracle extraction from natural language by using more advanced information retrieval and

natural language processing techniques.

3.4 Comparison with the state-of-the-art test generation tools

Our research complements prior work on automatically generating test inputs for re-

gression tests or manually-written oracles, such as EvoSuite [50] and Randoop [127], by

automatically extracting oracles from natural language specifications. The closest work to

ours is Toradacu [57] and Jdoctor [19], which focus on extracting oracles for exceptional be-
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havior, and @tComment [169], which focuses on extracting preconditions related to nullness

of parameters. These techniques are limited to using Javadoc comments, which are simpler

than the specifications Swami tackles because Javadoc comments (1) provide specific annota-

tions for pre- and post-conditions, including @param, @throws, and @returns, making them

more formal [169]; (2) are collocated with the method implementations they specify, (3) use

the variable names as they appear in the code, and (4) do not contain references to abstract

operations specified elsewhere. Additionally, recent work showed that Javadoc comments are

often out of date because developers forget to update them when requirements change [169].

Our work builds on @tComment, Toradacu, and Jdoctor, expanding the rule-based natu-

ral language processing techniques to apply to more complex and more natural language.

Additionally, unlike those techniques, Swami can generate oracles for not only exceptional

behavior but also boundary conditions. Finally, prior test generation work [19, 50, 57, 127]

requires access to the source code to be tested, whereas Swami can generate black-box tests

entirely from the specification document, without needing the source code.

3.5 Contributions

The main contributions of this work are:

• Swami, an approach for generating tests from structured natural language specifica-

tions.

• An open-source prototype Swami implementation, including rules for specification doc-

uments written in ECMA-script style, and the implementations of common abstract

operations.

• An evaluation of Swami on the ECMA-262 JavaScript language specification, com-

paring Swami-generated tests to those written by developers and those automatically

generated by EvoSuite, demonstrating that Swami generates tests often missed by de-
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velopers and other tools and that lead to discovering several unknown defects in Rhino

and Node.js.

• A replication package of all the artifacts and experiments described in paper available

at http://swami.cs.umass.edu/.

The full version of this study [120] can be found at

https://doi.org/10.1109/ICSE.2019.00035.
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CHAPTER 4

IMPROVING FAULT LOCALIZATION

4.1 Introduction

Identifying the defective program elements is the first step of repairing software defects

whether manually or automatically. Fault localization research focuses on automatically

identifying program elements (such as statements or methods) that are defective and cause

software failures. Most of the automated fault localization techniques use dynamic anal-

ysis and run-time information of the buggy program to compute the suspiciousness score

(probability of being defective) of the program elements. A ranked list of program elements

can then be used by the developer or automated program repair technique to fix the defect.

Please refer to the survey study [190] for more details.

Depending on the source of information used to localize the fault, fault localization (FL)

techniques can be classified into multiple classes. For example, spectrum-based fault localiza-

tion (SBFL) techniques (e.g., [3,65,192]) use test coverage information, mutation-based fault

localization (MBFL) techniques (e.g., [119, 128]) use test results collected from mutating

the program, (dynamic) program slicing techniques (e.g., [6,141]) use the dynamic program

dependencies, stack trace analysis techniques (e.g., [189,191]) use error messages, predicate

switching techniques (e.g., [203]) use test results from mutating the results of conditional

expressions, information retrieval-based fault localization (IR–based FL) techniques (e.g.,

[205], [151]) use bug report information, and history-based fault localization (e.g., [78,138])

use the development history to identify the suspicious program elements that are likely to

be defective.
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While there exists a variety of FL techniques, state-of-the-art automated program repair

techniques typically use SBFL techniques because they are light weight and the test-suites are

readily available for defects. However, recent studies have found that none of the class of FL

techniques is the best and combining multiple techniques across different classes outperforms

individual techniques [94, 207]. While CombineFL [207] combines 11 FL techniques which

belong to seven different classes using support vector machines (SVM), DeepFL [94] combines

226 fault localization techniques which belong to four (SBFL, MBFL, Code complexity based,

and IR-based FL) classes. Both these techniques are evaluated on the Defects4J dataset

which is also popularly used for evaluating automated program repair techniques.

While researchers are actively working on improving fault localization, to the best of our

knowledge, there does not exists any automated program repair technique that uses these

advancements of combining multiple fault localization techniques that belong to different

classes in the repair process. The work closest to experimenting with fault localization in

program repair is a recent repair technique iFixR [80] which uses IR-based FL (instead of

SBFL) and performs similar to using SBFL in terms of the number of fixed bugs plausi-

bly/correctly. This is not surprising as either FL technique is likely to perform well. In this

dissertation, we propose to use a combination of FL techniques in program repair process and

hypothesize that with improved fault localization, the quality of repair techniques improves.

This is work in progress.

4.2 Proposed Approach

4.2.1 Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a basic class of feedforward Artificial Neural Networks

(ANNs) which indicates that the network does not have any loop and the output of each

node does not affect the node itself [133]. MLP is a supervised learning algorithm that learns

a function f mapping from Rn to Rl by training a dataset which includes n features and l

labels. It can learn a non-linear function approximator for either classification or regression
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Figure 4.1. A Multi-Layer Perceptron with one input layer, one hidden layer and one
output layer and the definitions for four widely used activation functions in neural networks.

problem. Assume that there is a set of training data D = (x1, y1), (x2, y2), ..., (xm, ym), where

xi ∈ Rn and yi ∈ Rl, and one hidden layer with k nodes, the function that MLP learns is

as following: f(x) = σo(W
T
hoσh(W T

ihx + bh) + bo) where Wih ∈ Rn×k represents the weights

between input layer and hidden layer and Who ∈ Rk×l represents the weights between hidden

layer and output layer. bh ∈ Rk and bo ∈ Rl represent the bias of hidden layer and output

layer, respectively. σh and σo represents the activation functions (such as tanh, ReLU ,

sigmoid, and softmax) for the hidden layer and output layer, respectively.

Figure 4.1 shows a MLP with one input layer, one hidden layer and one output layer and

the definitions for four widely used activation functions in neural networks (z(i) represents

the ith dimension of vector z). Usually, tanh, ReLU , and sigmoid are used as hidden

layer activation function, while softmax is used as the output layer activation function for

multi-class classification problems.

4.2.2 Approach

Our approach to combine multiple FL techniques is inspired from DeepFL [94] and Com-

bineFL [207] both of which first compute the suspiciousness scores for each program element

using multiple FL techniques. The computed scores for each program element are repre-

sented as features of that element and the problem is framed as classifying the program

element as buggy or not buggy based on its feature values. While DeepFL uses 225 such
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features and uses neural networks, CombineFL uses 11 features and SVM, to compute the

probability of a given program element to be buggy given its features.

Although, the source code and dataset of DeepFL is available as open source, it is not

usable because (1) The DeepFL dataset does not provide mapping between the feature

vectors created for program elements and the actual source code in Defects4J1, (2) using 226

fault localization techniques to compute features for each program element is not practical

to be used in real-time repair, and (3) the features computed using IR-based FL techniques

consider textual similarity between developer-written tests and source code as opposed to

using natural-language bug reports. Similarly, the dataset and source code released for

CombineFL does not consider IR-based FL and History-based techniques even though the

results presented include both of these2.

We therefore, propose to implement our own neural network based fault localization

(NFL) technique that uses MLP to combine 10 different fault localization techniques which

belong to six different classes: SBFL (ochiai,dstar); MBFL (metallaxis,muse); Dynamic

program slicing (slicing union, slicing frequency, slicing intersection), Stack trace analysis,

Predicate switching, and our own implementation of IR-based FL.

Figure 4.2 shows the high-level neural network architecture we propose to use. Different

colors correspond to different class of fault localization techniques. The input to the model

is a 1 × 10 dimension feature vector that captures the suspiciousness scores of a program

element (source code statement in this case) computed using 10 different fault localization

techniques (we obtain IR-based FL features by implementing our own IR-based FL technique.

Appendix A describes the details of our IR-based FL technique). The model first combines

the scores of techniques that belong to the same family indicated by using different color

coding for six hidden layers shown in figure 4.2). Next, the output of the hidden layers is

combined together in a fully connected output layer of dimension 1× 2 which would contain

1https://github.com/DeepFL/DeepFaultLocalization/issues/2

2https://damingz.github.io/combinefl/index.html
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Figure 4.2. The proposed MLP architecture to combine 10 different fault localization
techniques which belong to six different classes. The input to the model is a 1×10 dimension
feature vector that captures the suspiciousness scores of a source code statement computed
using 10 fault localization techniques. The output of the model is a 1× 2 dimension vector
that contains the probabilities of the input to be buggy and not buggy.

the probabilities for the input to be buggy and not buggy. All the Wi are the network

parameters which are learnt by the model during training.

While DeepFL uses a similar architecture, as the number of features in our case is signif-

icantly smaller (226 vs 10), the exact same architecture as of DeepFL may not work well for

our dataset. Hence, we need to experiment and tune the proposed architecture by varying

different hyperparameters as well as changing network architecture.

4.3 Evaluation

This section describes the datasets and evaluation metrics we will use to evaluate NFL.

4.3.1 Dataset

We will evaluate NFL on Defects4J defect benchmark which consists of 357 defects from

five large open source Java projects and is used to evaluate several fault localization tech-

niques including DeepFL and CombineFL.
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We will also evaluate on Rhino dataset which consists of 13 defects mined from closed

bug reports filed in the Rhino bug tracking system3.

4.3.2 Evaluation metrics

To evaluate NFL and compare its performance with the state-of-the-art FL techniques,

we will use the following evaluation metrics used to evaluate CombineFL [207] in addition

to the metrics described in Appendix A, Section A.6.

1. Einspect@n: It counts the number of successfully localized defects within the top n

positions of the resultant ranked lists of program elements.

2. EXAM: It presents the percentage of program elements that have to be inspected

until finding a faulty element.

3https://github.com/mozilla/rhino/issues
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CHAPTER 5

HIGH QUALITY REPAIR USING IMPROVED FAULT
LOCALIZATION AND PATCH VALIDATION

5.1 Introduction

In this chapter we propose two methods to integrate the improved fault localization

and patch validation in the automated program repair process along with the details about

their evaluation. Both of these methods could improve the quality of repair techniques.

Section 5.2 describes the first proposed method in which we propose to extend our Java

Repair framework. Section 5.3 describes the second proposed method in which we use a

neural network to do end-to-end repair. Both of these are work in progress.

5.2 Proposed Method 1: Extend Java Repair Framework to in-

corporate improved FL

Recall that we implement JaRFly, an open source Java Repair Framework for building

Java Generate and Validate repair techniques which we use to evaluate the quality of repair

techniques (Chapter 2, Section 2.3). The existing implementation of JaRFly decouples and

provides high-level extension points for each of the fundamental components of the patch

generation process (see Chapter 1, Section 1.2) which include specifying the problem rep-

resentation, fitness function, mutation operators, and search strategy [64]. While JaRFly

implements a variant of SBFL that uses configurable path weights to compute path-based

localization, it also facilitates reading arbitrary localization data from a file, and an ab-

stract class for implementing alternative fault localization strategies. We propose to extend

JaRFly to incorporate our improved FL approach in the following manner. We can extend
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JaRFly to incorporate IR-based FL described in Appendix A. Further, to integrate NFL, our

proposed fault localization technique (Chapter 4) in JaRFly, we can use JaRFly’s feature

to read localization data from a file. The extended JaRFly would allow us to re-evaluate

the quality of the state-of-the-art repair techniques with proposed improvements in fault

localization (Chapter 4) and patch validation test suites (Chapter 3).

5.2.1 Dataset

We will use following two datasets to evaluate this method.

1. Defects4J: defect benchmark which consists of 357 defects from five large open source

Java projects and is popularly used to evaluate program repair techniques [74] . Fig-

ure 5.1 describes the Defects4J dataset.

2. Rhino: this consists of 30 defects which include 13 defects we manually mine from

closed bug reports filed in the Rhino bug tracking system1 and 17 defects which are

used to evaluate Par [77].

identifier project description KLoC defects tests test KLoC
Chart JFreeChart Framework to create charts 85 26 222 42
Closure Closure Compiler JavaScript compiler 85 133 3,353 75
Lang Apache Commons Lang Extensions to the Java Lang API 19 65 173 31
Math Apache Commons Math Library of mathematical utilities 84 106 212 50
Time Joda-Time Date- and time-processing library 29 27 2,599 50
total 302 357 6,559 248

Table 5.1. The 357 defect dataset created from five real-world projects in the Defects4J
version 1.1.0 benchmark. We used SLOCCount to measure the lines of code (KLoC) counts
(https://www.dwheeler.com/sloccount/). The tests and test KLoC columns refer to
the developer-written tests.

1https://github.com/mozilla/rhino/issues
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5.2.2 Evaluation

To evaluate the extended JaRFly framework which implements three repair techniques,

GenProg, Par, and TrpAutoRepair, we will perform following set of experiments.

1. Baseline: This involves running the techniques with default settings. We already have

results for these experiments (Chapter 2, Section 2.3).

2. Improved FL: This involves using FL results computed using NFL (Chapter 4) to

guide the repair process and then evaluate the quality of the repairs produced using

held-out evaluation test suites.

3. Improved Tests: This involves using improved developer-written test suites by using

Swami (Chapter 3) and other state-of-the-art test generation tools and then evaluating

the quality of the repairs produced using held-out evaluation test suite.

4. Improved FL and Tests: This involves using fault localization results computed us-

ing NFL and improved developer-written test suites by using automated test generation

tools to guide the repair process.

5.3 Proposed Method 2: Neural Network based End-to-End Pro-

gram Repair

The state of the art neural machine translation techniques have become mature enough

and outperform the traditional natural language processing in tasks such as translating from

English to French. However, using such techniques for programming language is challanging

because programs do not have a restricted vocabulary and the correctness criteria imposed

by compilers are strict unlike humans who can understand the meaning of a natural language

sentence even if a few words are misplaced or incorrect. Nevertheless, researchers have started

exploring applying these techniques to the tasks such as code generation from program

description [167] and have met some success. Researchers working on program repair have
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also applied these techniques to automtically generate patches by translating buggy source

code into repaired source code. However, the state-of-the-art deep-learning based program

repair techniques can only fix syntax errors in small programs [83] or single-line defects in

large programs [28] which requires manually specifying the defective source code statement.

Further, the quality of the produced patches is quite low. All these are attributed to the

limitation of deep learning models to manage the large vocabulary of programs and the large

context of a defect to be fixed.

We propose to devise a novel neural network-based program repair (NPR) technique

that can improve the quality of the patches of single-line defects produced by current tools

and can also be used to patch complex multi-line real-world defects in large programs. We

hypothesize that using convolution neural networks (CNNs) with multi-step attention [55]

which is shown to outperform neural machine translation models that use recurrent neural

networks (RNNs), along with copy mechanism [158], would enable our model to capture the

large vocabulary and the defect context. We propose to implement this model which would

take as input whole buggy file and produce a patch while considering the buggy context.

The proposed model would use NFL for fault localization which combines multiple fault

localization techniques (recall Chapter 4) and thus, would not require manually specifying

defective program elements.

5.3.1 Problem Definition

We formally define the problem of automatically repairing a defective program as follows.

Given a defective software program and a test suite which contains at least one failing test

that exercises the defect in the program, we want to modify the software program such that

the modified program passes all the tests. We next define the problem statement formally.

Given a buggy software system Sb, and a test-suite t, we first need to identify a set of

source code lines l = {l1, l2, ...} that are likely to have a bug. For each buggy line li, we

would also know the buggy file fli , the buggy class cli , and the buggy method mli . Thus,
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for each buggy location li, we define a buggy context BCi = {fli , cli ,mli}. For all li ∈ l, the

problem is to predict a set of fixed lines f = {f1, f2, ...} such that when we replace li with fi

incrementally to create a patched/modified software system Sf then Sf passes all the tests

in test-suite t.

5.3.2 NPR Approach

We hypothesize that using convolution neural networks (CNN) with multi-step attention

and copy mechanism would enable the model to capture the large vocabulary and the defect

context enabling NPR to patch complex multi-line defects in large programs. For more

details on advantages of using CNNs over RNNs see [55]. We propose to implement a

bidirectional sequence-to-sequence neural machine translation model using CNNs with multi-

step attention and copy mechanism. Figure 5.1 shows the high-level view of the training

and testing of the proposed approach. There are four main components of the proposed

architecture: an encoder, a decoder, an attention module, and a copy selector. During

training, the model has access to both the buggy and the fixed source code lines. The model

is trained to generate the best representations of the transformation from buggy to fixed

lines. In practice, this is conducted by finding the best combination of weights (Wrandom in

Figure 5.1) that translates buggy lines in the training set to fixed lines. Multiple passes on

the training data are required to obtain the best set of weights (Wlearnt in Figure 5.1). The

copy selector learns to handle out of vocabulary tokens by copying rarely occurring tokens

from buggy code to source code (e.g., specific variable names, method names etc.). During

testing, since the model does not have access to the fixed line, the decoder processes tokens

one by one, starting with a generic <START> token. The output of the decoder and the

encoder are then combined through the multi-step attention module and the copy selector

module. Finally, new tokens are generated based on the output of the copy selector, the

attention, the encoder and the decoder. The generated token is then fed back to the decoder

until the <END> token is generated.
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Formally, the proposed approach will take as input the buggy software system Sb, and

a test-suite t which contains passing and failing tests. It will use NFL to identify set of

source code lines l = {l1, l2, ...} that are likely to have a bug. Next, for each buggy line, the

approach determines the buggy context BCi = {fli , cli ,mli} and if the lines are contiguous (in

the same file) then the proposed model would predict the modifications to be made to each

line incrementally until the prediction stops by generating <END> token. The predicted

modifications would then be applied to the source buggy program and validated against the

test-suite t.

5.3.3 Dataset

For training our model, we will use the SequenceR [28] dataset which consists of pairs of

buggy and patched code lines mined from multiple GitHub projects. The training dataset

consists of 35,578 pairs and the test dataset consists of 4,711 pairs. To evaluate NPR on

real work defects, we will use Defects4J [75] benchmark which is popularly used to evaluate

program repair techniques.

5.3.4 Evaluation

We will evaluate NPR to identify for how many defects it is able to predict a plausible

patch. The correctness of the predicted patches will then be determined using independently

generated held-out evaluation test suites created using the human-fixed version of the soft-

ware (recall Chapter 2, Section 2.3). The quality of a patch is then identified as the fraction

of tests that pass in the evaluation test suite. Thus, a correct patch must pass all tests and

therefore will have a 100% quality.

We shall describe the characteristics of defects which NPR can/cannot patch along with

key factors that effect NPR’s ability to produce correct patches. To summarize, we will report

the accuracy of NPR to localize the defect and to predict the patch, its repair expressiveness,

and repair quality. We will also report comparison with the existing state-of-the-art repair

techniques.
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Figure 5.1. The proposed end-to-end neural network-based program repair technique based
on sequence–to–sequence neural machine translation(NMT) technique. During training, the
model is fed pair of buggy source code and human-written patch. During testing, the model
takes as input buggy source code and determines buggy program elements using NFl. Next,
it uses the trained model to predict the candidate patches for the buggy program elements.
Finally, the candidate patches are evaluated using provided test-suite to validate their cor-
rectness.
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CHAPTER 6

RELATED WORK

This chapter describes the existing research work organized in the context of automated

program repair (Section 6.1), studies of repair quality and other properties of automated

program repair (Section 6.2), automated fault localization (Section 6.3), and automated test

generation (Section 6.4).

6.1 Automatic Program Repair

There are two classes of approaches to repairing defects using failing tests to identify

faulty behavior and passing tests to encode desirable behavior: generate-and-validate and

semantic-based repair. The generate-and-validate techniques use search-based software en-

gineering [63] to generate many candidate patches and then validate them against tests.

GenProg [90, 92, 185] uses a genetic programming heuristic [81] to search the space of can-

didate repairs. TrpAutoRepair [136] limits its patches to a single edit, uses random search

instead of genetic programming, and heuristics to select which tests to run first, improving

efficiency. Prophet [106] and HDRepair [88] automatically learn bug-fixing patterns from

prior developer-written patches and use them to produce candidate patches for new defects.

AE [183] is a deterministic technique that uses heuristic computation of program equivalence

to prune the space of possible repairs, selectively choosing which tests to use to validate in-

termediate patch candidates. ErrDoc [172] uses insights obtained from a comprehensive

study of error handling bugs in real-world C programs to automatically detect, diagnose,

and repair the potential error handling bugs in C programs. JAID [27] uses automatically

derived state abstractions from regular Java code without requiring any special annotations
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and employs them, similar to the contract-based techniques to generate candidate repairs

for Java programs. Qlose [36] optimizes a program distance, a function of syntactic and

semantic differences between the original buggy and the patched programs, while generating

candidate patches. DeepFix [62] and ELIXIR [153] use learned models to predict erroneous

program locations along with patches. ssFix [193] uses existing code that is syntactically

related to the context of a bug to produce patches. CapGen [187] works at the AST node

level and uses context and dependency similarity (instead of semantic similarity) between the

suspicious code fragment and the candidate code snippets to produce patches. SapFix [108]

and Getafix [157], two tools deployed on production code at Facebook, efficiently produce

correct repairs for large real-world programs. SapFix [108] uses prioritized repair strategies,

including pre-defined fix templates, mutation operators, and bug-triggering change revert-

ing, to produce repairs in realtime. Getafix [157] learns fix patterns from past code changes

to suggest repairs for bugs that are found by Infer, Facebook’s in-house static analysis tool.

SimFix [71] considers the variable name and method name similarity, as well as structural

similarity between the suspicious code and candidate code snippets. Similar to CapGen, it

prioritizes the candidate modifications by removing the ones that are found less frequently in

existing patches. SketchFix [68] optimizes the candidate patch generation and evaluation by

translating faulty programs to sketches (partial programs with holes) and lazily initializing

the candidates of the sketches while validating them against the test execution. Par [77]

and SOFix [98] use predefined repair templates to generate candidate patches. These re-

pair templates are created based on the repair patterns mined from StackOverflow posts by

comparing code samples in questions and answers for fine-grained modifications. Synthe-

sis techniques can also construct new features from examples [30, 60], rather than address

existing bugs.

The semantic-based techniques use semantic reasoning to synthesize patches to satisfy

an inferred specification. Nopol [195], Semfix [124], DirectFix [111], and Angelix [112] use

SMT or SAT constraints to encode test-based specifications. S3 [87] extends the semantics-
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based family to incorporate a set of ranking criteria such as the variation of the execution

traces similar to Qlose [36]. JFIX [86] extends Angelix [112] to target Java programs. Sem-

Graft [110] infers specifications by symbolically analyzing a correct reference implementation

instead of using test cases. Genesis [103], Refazer [147], NoFAQ [37], Sarfgen [178], and

Clara [61] process correct patches to automatically infer code transformations to generate

patches. SearchRepair [76] blurs the line between generate-and-validate and semantic-based

techniques by using constraint-based encoding of the desired behavior to replace suspicious

code with semantically-similar human-written code from elsewhere.

We propose methods to design a new repair technique as well as methods that can improve

the quality of existing techniques. We also propose evaluation frameworks that aim to help

researchers to properly evaluate their techniques’ ability to produce high-quality patches for

real-world defects. Our work enables properly comparing techniques with respect to patch

quality, and encourages the creation of new techniques whose focus is producing high-quality

patches on real-world defects. Empirical studies of fixes of real bugs in open-source projects

can also improve repair techniques by helping designers select change operators and search

strategies [74,204]. Understanding how repair techniques handles particular classes of errors,

such as security vulnerabilities [92, 132] can guide tool design. For this reason, some auto-

mated repair techniques focus on a particular defect class, such as buffer overruns [160,162],

unsafe integer use in C programs [31], single-variable atomicity violations [72], deadlock and

livelock defects [96], concurrency errors [97], and data input errors [8] while other techniques

tackle generic bugs. Although our evaluation focused on tools that fix generic bugs, our

methodology can be applied to focused repair as well.

In addition to repair, search-based software engineering has been used for developing test

suites [117,176], finding safety violations [7], refactoring [159], and project management and

effort estimation [11]. Good fitness functions are critical to search-based software engineering.

Our findings indicate that using test cases alone as the fitness function leads to patches that
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may not generalize to the program requirements, and more sophisticated fitness functions

may be required for search-based program repair.

6.2 Empirical Studies Evaluating Automatic Program Repair

Prior work has argued the importance of evaluating the types of defects automated repair

techniques can repair [121], and evaluating the generated patches for understandability,

correctness, and completeness [118]. Yet many of the prior evaluations of repair techniques

have focused on what fraction of a set of defects the technique can produce patches for

(e.g., [25, 35, 42, 72, 92, 109, 183, 185]), how quickly they produce patches (e.g., [90, 183]),

how maintainable the patches are (e.g., [52]), and how likely developers are to accept them

(e.g., [2, 77]).

However, some recent studies have focused on evaluating the quality of repair and devel-

oping approaches to mitigate patch overfitting. For example, on 204 Eiffel defects, manual

patch inspection showed that AutoFix produced high-quality patches for 51 (25%) of the

defects, which corresponded to 59% of the patches it produced [131]. While AutoFix uses

contracts to specify desired behavior, by contrast, the patch quality produced by techniques

that use tests has been found to be much lower. Manual inspection of the patches pro-

duced by GenProg, TrpAutoRepair (referred to as RSRepair in that paper), and AE on

a 105-defect subset of ManyBugs [137], and by GenProg, Nopol, and Kali on a 224-defect

subset of Defects4J showed that patch quality is often lacking in automatically produced

patches [109]. An automated evaluation approach that uses a second, independent test suite

not used to produce the patch to evaluate the quality of the patch similarly showed that

GenProg, TrpAutoRepair, and AE all produce patches that overfit to the supplied spec-

ification and fail to generalize to the intended specification [23, 163]. This work has led

to new techniques that improve the quality of the patches [76, 104, 106, 193, 194, 200]. For

example, DiffTGen generates tests that exercise behavior differences between the defective

version and a candidate patch, and uses a human oracle to rule out incorrect patches. This
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approach can filter out 49.4% of the overfitting patches [193]. Using heuristics to approx-

imate oracles can generate more tests to filter out 56.3% of the overfitting patches [194].

UnsatGuided uses held-out tests to filter out overfitting patches for synthesis-based repair,

and is effective for patches that introduce regressions but not for patches that only par-

tially fix defects [200]. Automated test generation techniques that generate test inputs

along with oracles [19, 57, 120, 169] or use behavioral domain constraints [10, 53], data con-

straints [48,122,123], or temporal constraints [12,13,15,43,126] as oracles could potentially

address the limitations of the above-described approaches.

Using independent test suites to measure patch quality is imperfect, as test suites are

partial and may identify some incorrect patches as correct. On a dataset of 189 patches

produced by 8 repair techniques applied to 13 real-world Java projects, independent tests

identify fewer than one fifth of the incorrect patches, underestimating the overfitting prob-

lem [85]. However, on other benchmarks, the results are much more positive. For example, on

the QuixBugs benchmark, combining test-based and manual-inspection-based quality evalu-

ation could identify 33 overfitting patches, while test-based evaluation alone identified 29 of

the 33 (87.9%) [197]. While the human judgment is a criterion not used by the repair tools

for patch construction, it is fundamentally different from the correctness criterion we use in

our evaluation, as it is often difficult for humans to spot bugs even when told exactly where

to look for them [129]. Further, using independently generated test suites instead of using

the subset of the original test suite to evaluate patch quality ensures that we do not ignore

regressions a patch is most likely to introduce. Poor-quality test suites result in patches that

overfit to those suites [137]. Our evaluation goes further, demonstrating that high-quality,

high-coverage test suites still lead to overfitting, and identifying other relationships between

test suite properties and patch quality.

Our work has focused on understanding the effectiveness of repair techniques to patch

large real-world Java programs correctly and to identify what factors affect the generation of

high-quality patches. Studying the effects of test suite size, coverage, number of failing tests,

45



and test provenance on the quality of the patches generated by Angelix on the IntroClass [91]

and Codeflaws [170] benchmarks of defects in small programs finds results consistent with

ours. By contrast, our work focuses on real-world defects in real-world projects and generate-

and-validate repair. Further, prior work has shown that the selection of test subjects (defects)

can introduce evaluation bias [18, 135]. Our evaluation focuses precisely on the limits and

potential of repair techniques on a large dataset of defects, and controls for a variety of

potential confounds, addressing some of Monperrus’ concerns [118].

6.3 Automated Fault Localization

Fault Localization [3, 21, 34, 73, 95, 119, 130, 148, 149] aims to precisely identify potential

buggy program elements that cause the defects to facilitate bug fixing. The most widely

studied class of fault localization techniques is spectrum-based fault localization (SBFL)

which usually apply statistical analysis (e.g., Tarantula [73], Ochiai [3], and Ample [34])

or learning techniques [21, 148, 149, 150] to the execution traces of both passed and failed

tests to identify the most suspicious program elements (e.g., statements/methods). The

insight behind these techniques is that program elements primarily executed by failed tests

are more suspicious than the elements primarily executed by passed tests. However, a

program element executed by a failed test does not necessarily indicate that the element

has impact on the test execution and has caused the test failure. To bridge the gap between

coverage and impact information, researchers proposed mutation-based fault localization

(MBFL) [119, 128, 202], which injects changes to each program element (based on mutation

testing [39, 70]) to check its impact on the test outcomes. MBFL has been applied to both

general bugs (e.g., Metallaxis [128]) and regression bugs (e.g., FIFL [202]). Besides SBFL and

MBFL, researchers have proposed to utilize various other information for fault localization

such as program slicing (e.g., [6, 141]) that use dynamic program dependencies, stack trace

analysis (e.g., [189, 191]) to use error messages, predicate switching (e.g., [203]) to use

test results from mutating the results of conditional expressions, information retrieval-based
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fault localization (IR–based FL) (e.g., [205], [152]) that use bug report information, and

history-based fault localization (e.g., [78,138]) that use the development history to identify

the suspicious program elements that are likely to be defective.

The work that is closet to our proposed approach of combining multiple fault localization

techniques is DeepFL [94] and CombineFL [207] both of which first compute the suspicious-

ness scores for each program element using multiple FL techniques. Although, the source

code and dataset of DeepFL is available as open source, it is not usable because (1) The

DeepFL dataset does not provide mapping between the feature vectors created for program

elements and the actual source code in Defects4J1, (2) using 226 fault localization techniques

to compute features for each program element is not practical to be used in real-time re-

pair, and (3) the features computed using IR-based FL techniques consider textual similarity

between developer-written tests and source code as opposed to using natural-language bug

reports. The dataset and source code released for CombineFL does not consider IR-based

FL and History-based techniques even though the results presented include both of these2.

Hence, we propose to implement our own model that addresses these limitations.

6.4 Automated Test Generation

Techniques that extract oracles from Javadoc specifications are the closest prior work

to Swami, our proposed approach of automatically generating tests from natural language

specifications. Toradacu [57] and Jdoctor [19] do this for exceptional behavior, and @tCom-

ment [169] for null pointers. These tools interface with EvoSuite or Randoop to reduce

their false alarms. JDoctor, the latest such technique, combines pattern, lexical, and se-

mantic matching to translate Javadoc comments into executable procedure specifications for

pre-conditions, and normal and exceptional post-conditions. Our approach builds on these

1https://github.com/DeepFL/DeepFaultLocalization/issues/2

2https://damingz.github.io/combinefl/index.html
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ideas but applies to more general specifications than Javadoc, with more complex natural

language. Unlike these tools, Swami does not require access to the source code and gen-

erates tests only from the specification, while also handling boundary conditions. When

structured specifications, Javadoc, and source code are all available, these techniques are

likely complementary. Meanwhile, instead of generating tests, runtime verification of Java

API specifications can discover bugs, but with high false-alarm rates [93].

Requirements tracing maps specifications, bug reports, and other artifacts to code el-

ements [40, 66, 190], which is related to Swami’s Section Identification using the Okapi

model [144, 165]. Static analysis techniques typically rely on similar information-retrieval-

based approaches as Swami, e.g., BLUiR [152], for identifying code relevant to a bug report.

Swami’s model is simpler, but works well in practice; recent studies have found it to outper-

form more complex models on both text and source code artifacts [139,171].

Dynamic analysis can also aid tracing, e.g., in the way Cerberus uses execution trac-

ing and dependency pruning analysis [44]. Machine learning can aid tracing, e.g., via word

embeddings to identify similarities between API documents, tutorials, and reference docu-

ments [199]. Unlike Swami, these approaches require large ground-truth training datasets.

Future research will evaluate the impact of using more involved information retrieval models.

Automated test generation (e.g., EvoSuite [50] and Randoop [127]) and test fuzzing (e.g.,

afl [4]) generate test inputs. They require manually-specified oracles or oracles manually

encoded in the code (e.g., assertions), or generate regression tests [50]. Swami’s oracles can

complement these techniques. Differential testing can also produce oracles by comparing

behavior of multiple implementations of the same specification [22,26,49,155,164,196] (e.g.,

comparing the behavior of Node.js to that of Rhino), but requires multiple implementations,

whereas Swami requires none.

Specification mining uses execution data to infer (typically) FSM-based specifications [1,

13,14,15,56,82,84,99,100,101,102,126,140,156]. tautoko uses such specifications to gen-

erate tests, e.g., of sequences of method invokations on a data structure [33], then iteratively
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improving the inferred model [33,177]. These dynamic approaches rely on manually-written

or simple oracles (e.g., the program should not crash) and are complementary to Swami,

which uses natural language specifications to infer oracles. Work on generating tests for

non-functional properties, such as software fairness, relies on oracles inferred by observing

system behavior, e.g., by asserting that the behavior on inputs differing in a controlled

way should be sufficiently similar [53], [24], [10]. Meanwhile, assertions on system data can

also act as oracles [122, 123], and inferred causal relationships in data management sys-

tems [51, 113, 114] can help explain query results and suggest oracles for systems that rely

on data management systems [116]. Such inference can also help debug errors [179,180,181]

by tracking and using data provenance [115].

Dynamic invariant mining, e.g., Daikon [48], can infer oracles from test executions by

observing arguments’ values method return values [125]. Such oracles are a kind of regression

testing, ensuring only that behavior does not change during software evolution. Korat uses

formal specifications of pre- and post-conditions (e.g., written by the developer or inferred

by invariant mining) to generate oracles and tests [20]. By contrast, Swami infers oracles

from the specification and neither requires source code nor an existing test suite.
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CHAPTER 7

RESEARCH PLAN

This chapter describes the research plan for all the projects and tasks that are part of

this dissertation along with potential risks in projects which are work in progress.

7.1 Projects and Timeline

Following is the list of projects and tasks that are part of this dissertation along with

their progress.

1. Auto-Repair Applicability: Defining an objective evaluation framework to evaluate

the applicability of automated program repair techniques and evaluate state-of-the-art

repair techniques to determine if they are able to patch defects which are hard and

important for developers. This project is completed and published in EMSE ’18 ( [121]).

2. Java Repair Quality: Large scale study to evaluate the quality of automated program

repair techniques on real world defects and determine the factors that affect repair

quality. This project is completed and is under review in TSE.

3. SOSRepair: Scaling SearchRepair, a semantics based repair technique that produces

high quality patches for small programs to be applicable on real-world defects in large

programs. This project is completed and published in TSE ’19 ( [5]).

4. Swami: Automatically generating precise tests with oracles from structured natural

language software specifications. This project is completed and published in ICSE ’19 (Re-

search track) [120].
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5. IR-based FL: Implementing Information Retrieval based fault localization technique

to use bug reports for localizing defects. This project is completed as part of the

synthesis project.

6. NFL: Implement Neural Network based fault localization that combines 10 different

fault localization techniques which belong to six different classes of fault localization

approach. This project is work in progress.

7. JaRFly extension: Extend JaRFly to incorporate IR-based FL and NFL and test if

improving fault localization and developer-written tests improves the quality of existing

repair techniques. This project is work in progress.

8. NPR: Implement Neural Network based end-to-end program repair which takes as

input buggy program and associated artifacts, and produces a patched program. NPR

uses NFL for fault localization. This project is work in progress.

9. Dissertation: Write dissertation and prepare presentation. This is yet to begin.

Figure 7.1 shows the detailed timeline of these tasks/projects. The research plan for the

projects what are work in progress is as follows. We plan to implement NFL by the end of

January 2020 and then extend JaRFly to incorporate NFL and IR-based FL and evaluate

if the improved fault localization and developer-written test suites improve the quality of

the repair techniques by the end of February 2020. In parallel, we will also work on NPR

separately and if by FSE deadline in March we have any interesting results, we shall submit

to FSE otherwise, based on the findings, we attempt to improvise results and perform more

experiments to target ICSE in August 2020. We plan to finish the writing of dissertation

and defending it by the end of August so as to graduate by September 2020.
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Figure 7.1. Proposed timeline for this dissertation. Top chart shows the lists of all the
projects that are pursued as part of this dissertation along which their timeline. The green
color indicates the projects that are completed and the orange indicates the projects/tasks
that are work in progress. Bottom chart shows the detailed timeline plan for completing the
projects which are work in progress and the task of writing the dissertation.
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7.2 Potential Risks and Contingency Plan

Following are the potential risks we may encounter in the projects which are work in

progress and proposed ways to mitigate it.

1. NFL does not outperform CombineFL or DeepFL. In such case, we shall use

CombineFL’s approach by incorporating IR-based FL features.

2. Unavailability of bug reports for all defects. If this happens for a majority of the

defects in our dataset then we can consider using IR-based FL on failing tests instead

of bug reports (similar to DeepFL). If this happens for small subset of our dataset

then we can set the IR-based FL feature value to be 0.5 (indicating equal probability

of being buggy and not buggy) for all the source code elements in NFL.

3. NPR doesn’t scale to fix multi-line defects. We can experiment with other state-

of-the-art neural machine translation models and if nothing works then we shall atleast

have some insignts about why these techniques are not able to scale.
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CHAPTER 8

CONTRIBUTIONS

While existing automated program repair techniques can fix a large number of bugs

in real- world software, most of the repairs produced are not correct or acceptable to the

developers. This is a critical concern which prevents program repair techniques to be used

in real-life software development processes. This dissertation proposes multiple methods to

address this problem.

We define objective evaluation frameworks to evaluate the applicability and quality of

the automated repair techniques and evaluate state-of-the-art repair techniques using our

framework. We also evaluate the quality of SOSRepair, a novel semantics-based repair

technique that builds upon SearchRepair, a semantics-based repair technique which produces

high-quality patches for small programs, to run on real-world defects. The key findings from

all these evaluations reveal that fault localization and test suites significantly affect the

quality of the repair techniques.

This motivates us to propose a method to improve fault localization and test suites

used to guide the repair by extracting information from multiple sources including natural-

language software artifacts such as software specifications and bug reports. Finally, we

propose two methods to improve the quality of repair techniques by integrating the improved

fault localization and patch validation in the program repair process. The first method

involves extending our Java Repair framework to incorporate improved FL and test suites.

The second method involves using deep learning to design end-to-end program repair that

uses improved fault localization and test suites.
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APPENDIX

INFORMATION RETRIEVAL BASED FAULT LOCALIZATION

A.1 Abstract

Software specification is almost always expressed informally in natural language and free

text. Examples include requirement specifications, design documents, manual pages, system

development journals, error logs, and related maintenance reports. Identifying the parts of

the source code that correspond to a specification is a prerequisite to tasks including program

comprehension, maintenance, requirements tracing, and impact analysis. This process, com-

monly called concern location (or concept, or feature location) is one of the most common,

important, and expensive activities undertaken by developers. In this work, we present IRFL

— a method for automating this task by using static program analysis and a structural infor-

mation retrieval model that uses code constructs, such as class, method, and variable names

to identify the parts of the software that are relevant to a given concern. Our method works

with the popular ECMAScript International standard for natural-language specifications,

which Mozilla Rhino’s follows. We evaluate IRFL on Mozilla Rhino — a large, open-source

implementation of JavaScript written entirely in Java. IRFL achieves the mean average

precision (MAP) of 0.48 and the mean reciprocal rank (MRR) of 0.81.

A.2 Introduction

A software concern (also known as concept or feature in software engineering domain) is

any consideration that can impact the implementation of a program [146]. Every line of code

exists to satisfy some concern which may be described in many ways and at various levels of

abstractions such as list of features from feature specification document, requirements from
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software requirements specification document, design patterns and design elements from

design document and, low level programming concerns such as code comments written to

describe the implemented code.

Identifying parts of the source code that are related to a given concern is central to

the software development, testing, and maintenance activities. The relationship between

the concerns and the implemented source code is rarely documented [79]. This makes it

difficult for the programmers to answers questions such as “Where are all the places that

the undo feature is implemented?” (top-down analysis [175]) and “What is this piece of code

for?” (bottom-up analysis [175]). Manually locating concerns in an implemented program

can be very cumbersome and impractical especially for large programs where programmers

may not be well versed with all the components of the program. Further, without proper

understanding of the scattered nature of the concern implementation, programmers may

make incorrect changes or neglect to make changes and test all the right places.

Several concern location techniques (e.g., concept assignment [17], feature location [41],

requirements tracing [46], and bug localization [152,198,199,206]) aim to address this problem

by automatically locating the program elements (e.g., classes, methods, variables) that are

relevant to a given concern. While most of these techniques focus on software maintenance

activities where the programmers are given a change request (e.g., a bug report) and they

have to identify the relevant parts of code which should be updated to satisfy the change

request, our focus is slightly different. We aim to devise a technique that can facilitate

software testers to verify if their software satisfies given specifications. The first step toward

achieving this goal is to retrieve all the parts of the source code that must comply to a given

specification. Henceforth, we refer to specifications and concerns interchangeably.

In this work, we create IRFL to establish a baseline for locating concerns using static

program analysis and a structured information-retrieval based (IR) model. We use IRFL to

locate the relevant parts of the Rhino source code (Rhino version 1.5R6) for the concerns

extracted from the ECMAScript standard specification document (ECMA-262 v3 ). IRFL
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is built upon BLUiR [152] — a tool to facilitate fault localization and Indri [166] — an IR

toolkit to perform information retrieval. We evaluate IRFL using the ground-truth data

provided by Eaddy et al. [45] for the Rhino dataset.

The rest of this report is organized as follows. Section A.3 describes the related work,

Section A.4 describes the Rhino dataset used in this study, Section A.5 provides the details

of our concern location approach, Section A.6 describes the metrics we use to evaluate

our approach, Section A.7 describes the experiments and results, Section A.8 describes the

threats to validity and, Section A.9 describes conclusion and future work.

A.3 Related Work

Several techniques have been proposed to trace software concerns to the source code,

which employ multiple types of software and data analysis [41]. These techniques can be

broadly classified into static, dynamic, and combined analysis based approaches.

Static-analysis based techniques use the source code and possible documentation available

along with source code such as code comments for mapping concerns [134,152]. Based on the

type of information used for tracing, these techniques are further classified into text-based

techniques, which use text-based search; structural-based techniques, which use the structure

of the documents while searching; and hybrid techniques which combine information from

different sources. These techniques use information retrieval (IR) based mechanisms wherein

the source code and related documentation are represented as documents and a concern is

represented as a query. An IR based technique is then used to rank the source code documents

based on the similarity score between the query and the source code documents. BLUiR (Bug

Localization using IR) is a system that localizes the bugs in a source code by identifying the

source code that is relevant for a given a bug report [152]. It uses a hybrid approach in which

it uses TF-IDF — an IR-based technique to identify the similarity between the terms in bug

reports and the source code and incorporates the source code structure by distinguishing the

terms occurring in comments with names of classes, methods, and variables. It is built on
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top of the IR toolkit Indri [166]. Poshyvanyk et al. [134] propose a concern location approach

that uses Formal Concept Analysis (FCA) and IR. Their approach uses LSI — an advanced

IR approach, to map textual descriptions of software features or bug reports to relevant

parts of the source code and to generate a ranked list of source code documents. After

generating this ranked list of source code documents, it selects the most relevant attributes

(terms that are highly similar) from the best-ranked documents and clusters these documents

using the FCA algorithm (borrowed from mathematical lattice theory). This results in a

concept lattice that contains an annotated description for concept nodes along with the links

to actual documents in the source code. The user can then browse the results by traversing

the lattice and refine the query if required.

Combined analysis based techniques use the static analysis (as described above) along

with dynamic analysis which involves executing a program and analyzing its runtime behav-

ior to determine the program elements that get activated when the given natural language

concern is exercised. CERBERUS [45] is a hybrid system for concern location that uses IR,

execution tracing, and prune dependency analysis to map concerns to source code elements.

For the static analysis, it improves on existing techniques by considering the structure of the

source code. For the dynamic analysis, it improves on existing techniques by considering the

field accesses as well as the method executions. In addition to these improvements, CER-

BERUS uses the prune dependency analysis to infer additional relevant program elements

by analyzing different kinds of relationships between program elements.

Recently, researchers have started exploring machine-learning based approaches as op-

posed to traditional IR models. For instance, Ye et al. [199] propose a model based on word

embeddings in which they train their model on API documents, tutorials, and reference doc-

uments to learn word embeddings and then aggregate them to estimate semantic similarities

between documents. They evaluate their model empirically and find that the learned vector

space embeddings lead to improvements in a previously explored fault localization and a

newly defined task of linking API documents to computer programming questions.
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A.4 Dataset

The lack of well-established benchmarks and commonly accepted set of features associated

with the source code that implements them which could be used to compare concern location

techniques [41] limits us to select a somewhat ad-hoc dataset to evaluate our technique. We

chose the Rhino dataset for our study because Eaddy et al. [45] constructed the ground-truth

data by manually mapping the parts of the Rhino source code to the relevant concerns from

the ECMA standard specification document (ECMA-262-v3 ). Sections 1 to 6 of the ECMA-

262-v3 document describe generic information such as definitions and notational conventions

which are not directly applicable to Rhino’s implementation. Hence, we consider only those

specifications for concern location (section 7 onwards) which are directly applicable to the

implemented software. There are a total of 480 such concerns in the ECMA-262 v3 and a

total of 140 classes (Java source code files) in the Rhino version 1.5R6.

A.4.1 Pre-processing

The ECMA-262 v3 document contains 16 sections each of which contains multiple levels

of sub-sections. We pre-process this document to extract the leaf-level sections which contain

the description of specification and concatenate the titles of all the parent sections up to the

root node to create a summary. Finally, we present each concern in the following XML

format which has a concern id (section id concatenated with titles of all parent sections),

summary (title of the section) and description (body of the section).

<specification>

<concern id=< ID >>

<summary> </summary>

<description> </description>

</concern>

.

.
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.

<concern> ... </concern>

</specification>

Figure A.1 shows the XML representation of the specifications for Array.pop and Ar-

ray.join operations extracted from ECMA-262-v3.

Figure A.1. Specifications for Array join and Array pop operations from ECMA-262-v3
represented in XML format

Analyzing the ground-truth data we found that the mappings created between concerns

and source code were at a more granular level (method level instead of class level). We

processed the ground-truth data to create the mappings at a class level which is required

for evaluating our technique. After processing the ground-truth data, we got 279 out of the

480 concerns mapped to 90 out of 140 classes resulting in a total of 18,501 mappings. We

evaluate the performance of our technique using these 279 concerns for which the ground

truth data is available.
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Figure A.2. Natural language concern from ECMA-262-v3 describing the implementation
of Array.join operation in Rhino

Figure A.3. Array.join operation implemented in NativeArray.java file of Rhino Version
1.5R6 source code
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A.5 Approach

A.5.1 Background

The fundamental assumption underlying IR-based concern location techniques is that

some terms in a given concern will be found in relevant source files. Figure A.2 shows an

example of natural language concern from ECMA-262-v3 that describes the implementation

of the Array.join operation in Rhino and Figure A.3 shows the actual implementation in

Rhino Version 1.5R6. It can be realized that these two do contain common terms.

In IR-based concern location techniques, source code files represent the document collec-

tion to search and each concern represents a search query. Finding candidate source code

files that should satisfy the concern is then reduced to standard IR ranking of documents

(source code files) based on estimated relevance to each query (concern). The better an

IR system can interpret the concerns and source files, the more accurately it is expected to

highly rank the source code files.

A typical IR system begins with the following three-step preprocessing: text normal-

ization, stopword removal, and stemming. Normalization involves removing punctuation,

performing case-folding, tokenizing terms, etc. to ultimately define the initial vocabulary

of terms in which queries and documents will be represented. Next, a set of extraneous

terms identified in a stopword list (e.g., to, the, be, etc.) are filtered out in order to im-

prove efficiency and reduce spurious matches. Finally, stemming conflates variants of the

same underlying term (e.g., ran, running, run) to improve term matching between query and

document.

While these three pre-processing steps are often given short shrift in describing IR ap-

proaches, they embody important trade offs that can significantly influence the ultimate

success or failure of the retrieval model. For example, normalization can increase matches

between query and document by case-folding (improving recall), but this can also introduce

spurious matches as well (hurting precision). Similarly, while stopword removal can reduce

unhelpful term matching (e.g., to), any stopword removed is almost certain to hurt matching
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for some particular query (e.g., to be or not to be). Finally, stemming will increase recall by

conflating variants of the same underlying term, but this may also introduce false matches.

For reproducible experimentation, preprocessing methods should be fully described along

with other details of the IR model.

Once queries and documents have been pre-processed, documents are indexed by collect-

ing and storing various statistics, such as term frequency (TF, the number of times a term

occurs in a given document), and document frequency (DF, the number of documents in

which the term appears). IDF refers to inverse document frequency, which is most simply

formulated as log(DF
N

) where N is the number of documents in the collection.

A widespread misconception about TF-IDF merits particular attention. Specifically,

“The TF-IDF model is often used as a baseline model for comparison with new retrieval

models. However, it is not actually a well-defined model, in the sense that there are several

heuristic components in the model that can affect performance significantly.” [201].

A.5.2 Architecture

We implement IRFL , which builds upon BLUiR [152] and use it to locate concerns in the

source code. Figure A.4 shows the overall architecture of IRFL . The following sub-sections

describe the working of IRFL in detail.

Specification
Documents

Source Code
Files

class

method

variable

comments

AST
Constructor

Structured
DocumentsTokenizer

Indexer

IndexTokenizer

Parameters
(k1, b)

Queries

Ranked List
of Documents

Structured Retrieval

Figure A.4. IRFL Architecture
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A.5.2.1 Source Code Parsing & Term Indexing

First, IRFL takes as input the source code files (Java files of Rhino Version 1.5R6) in

which we would like to locate concerns. Next, it builds the abstract syntax tree (AST) of

each source code file using Eclipse Java Development Tools (JDT) and traverses the AST

to extract different program constructs namely class names, method names, variable names,

and comments. This ensures that the language keywords such as String, Class, if, and else are

not pruned off.

The extracted identifiers are then split into tokens using CamelCase splitting for indexing

which improves the recall. As a specification document also contains full identifiers, the

model indexes both full identifiers as well as split tokens. This information for each source

code file is then stored as a structured XML document.

Reducing concern location to a standard IR task enables us to use prior theoretical and

empirical IR methodology for tackling concern location. We adopt the Indri toolkit [166]

for efficient indexing and developing our retrieval model. After XML documents are created

above, they are handed off to Indri for stopword removal, stemming, and indexing.

A.5.2.2 Specification Parsing & Query Generation

As described in Section A.4 (Pre-processing),IRFL parses the ECMA-262 v3 document

to extract all the specifications applicable to Rhino’s implementation and represents them in

XML format (labeled as Queries in Figure A.4). Similar to source code files, the model tok-

enizes the XML-based concerns and then hands off to Indri for stopword removal, stemming

and retrieval.

A.5.2.3 Retrieval Model

This section describes the general Term Frequency — Inverse Document Frequency (TF-

IDF) model and its variant (built in Indri [201]) which we adopt in our retrieval model.

Assume that a document is represented by a term frequency vector ~d and a query by a

term frequency vector ~q. Both ~d and ~q are of length n where n is the size of vocabulary.
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~d = (tfd(t1), tfd(t2), ..., tfd(tn))

~q = (tfq(t1), tfq(t2), ..., tfq(tn))

where tfd(ti) and tfq(ti) denotes the frequency of occurrence of the ith term of the vocabulary

(ti) in document ~d and query ~q respectively.

Typically when documents are represented in a vector space model, instead of using the

raw term frequencies, terms are weighted by a heuristic TF-IDF weighting formula. The

Inverse document frequency (IDF) diminishes the weight of terms that occur very frequently

in the document set and increases the weight of terms that occur rarely. Weighted vectors

for ~d and ~q are thus:

~d = (tfd(t1).idf(t1), tfd(t2).idf(t2), ..., tfd(tn).idf(tn))

~q = (tfq(t1).idf(t1), tfq(t2).idf(t2), ..., tfq(tn).idf(tn))

In the simplest TF-IDF model, IDF of term t is computed using idf(t) = log(N/Nt)

where N denotes the total number of documents and Nt denotes the number of documents

that contain term t. Now to identify the similarity between document d and query q, we

compute the sum of tfd(t).idf(t) scores for all the terms t that occur in query q.

As described earlier, the actual TF-IDF models that are used in practice differ greatly

from the simplest model for improved accuracy [145, 161]. We adopt Indri’s [201] TF-IDF

model which is based on the well-established BM25 (Okapi) model [145]. The following

describes this model in detail.

The formula for computing inverse document frequency of term t is smoothed as shown

in Eq. A.1 to avoid division by zero which would occur whenever a particular term appears

in all the documents.

idf(t) = log(
N + 1

Nt + 0.5
) (A.1)

where N denotes the total number of documents and Nt denotes the number of documents

in which term t appears.
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The formula for computing the term frequency of a term t in document ~d is computed

by the Okapi TF formula:

tfd(t) =
k1x

x+ k1(1− b+ b ld
lC

)
(A.2)

where x denotes the number of times term t appears in document ~d, k1 and b are tuning

parameters and ld and lC denote the document length and average document length respec-

tively. The tuning parameter k1(>= 0) calibrates document term frequency scaling and

parameter b ∈ [0, 1] is the document scaling factor which adds a heuristic of modeling doc-

ument length. When the value of b is 1, the term weight is fully scaled by the document

length and when the value of b is 0, no length normalization is applied.

The formula for query TF is defined similarly though b is set to 0 since the query is fixed

across documents being compared, and thus normalization of query length is not needed.

k1 is set to 1000 to obtain raw query term frequency because the probability of having the

same term many times in a query is rare. This makes the query TF formula almost identical

to the original BM25 query TF formula as shown in Equation A.3 where k3 = k1.

tfq(t) =
k3y

y + k3
(A.3)

were y is the number of times term t appears in query ~q. Finally, the similarity score of

document ~d against query ~q is computed using:

s(~d, ~q) =
n∑

i=1

tfd(ti)tfq(ti)idf(ti)
2 (A.4)

Incorporating Structural Information. The TF-IDF model presented in Equa-

tion A.4 does not consider the program constructs i.e., each term in a source code file is

considered having the same relevance with respect to the given query. Therefore, important

information like class names and method names often get lost in the relatively large number
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of variable names and comments terms due to the term weighting function (Equation A.2).

Therefore, if a source code file with class name Array also contains 10 other variable names

having the term Array, then the class name Array does not add much weight. Thus, if there

is a concern related to class Array, it will rank another file higher if that file has the term

Array more than 11 times even in the local variable names or comments.

The proposed model distinguishes different code constructs to overcome this problem. We

distinguish two alternative query representations coming from different fields of the concern

(the summary and the more verbose description). Parsing source code structure also lets us

distinguish four different document fields: class, method, variable, comments. To exploit

all of these different types of query and document representations, we perform a separate

search for each of the eight (query representation, document field) combinations and then

sum document scores across all eight searches. Equation A.5 shows how we compute the

similarity scores of documents for a given query.

s′(~d, ~q) =
∑
r∈Q

∑
f∈D

s(df , qr) (A.5)

where r is a particular query representation and f is a particular document field.

The benefit of this model is that terms appearing in multiple document fields are im-

plicitly assigned higher weight, since the contribution from each term is summed over all

fields in which it appears. While this method of integrating structural information is quite

simple, more sophisticated methods for integrating structural information exist and could

be explored in future work, e.g., doing a weighted combination rather than a simple sum,

or better yet, weighting term frequencies rather than document fields to better control for

term frequency saturation [143].

A.6 Evaluation Metrics

We evaluate IRFL using the following metrics which are popularly used for evaluating

IR systems.

67



1. Success at Top N : The number of concerns with at least one relevant source code

file found in the top N (N ∈ {1, 5, 10}) ranked results. This metric emphasizes early

precision over total recall. As our evaluation is limited to the 279 concerns of the

ground-truth data, the value of Success at Top N lies between 0 and 279.

2. Mean Reciprocal Rank (MRR): The reciprocal rank of a query response is the mul-

tiplicative inverse of the rank of the first relevant document. Similar to Success at

Top N, this metric emphasizes early precision over recall. MRR is the reciprocal rank

averaged over all the queries:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where ranki is the reciprocal rank for ith query. The vaue of MRR lies between 0 and

1. Higher MRR indicates the model has higher precision. MRR = 1 indicates that

for every query, the most relevant document is ranked first.

3. Mean Average Precision (MAP): The most commonly used metric for IR system eval-

uation. This metric takes into account all the documents retrieved for a query along

with their ranks. Unlike the above metrics, this emphasizes on recall over precision.

MAP for a set of queries is the mean of the average precision scores for each query:

MAP =

∑Q
q=1 AP(q)

Q

where AP(q) is the average precision of a single query q:

AP =
M∑
k=1

P (k)× pos(k)

number of positive instances

where k is the rank of the document retrieved, M is the number of documents retrieved,

pos(k) is the binary indicator of whether the document at kth rank is relevant, and
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P (k) is the precision at the given cut-off rank k. The value of MAP lies between 0 and

1. Higher MAP indicates that model has higher recall. MAP = 1 indicates that for

every query, the model is able to retrieve all the relevant documents and assign them

higher rank than non-relevant documents.

4. Precision Per Query (PPQ): The fraction of relevant documents among the retrieved

documents for a given concern:

PPQi =
Relevanti
Retrievedi

where Relevanti is the total number of relevant documents retrieved for the ith concern

and Retrievedi is the total number of documents retrieved for the ith concern. The

value of PPQ lies between 0 and 1.

5. Recall Per Query (RPQ): The fraction of relevant documents divided by the total

number of relevant documents for a given concern.

RPQi =
Relevanti

Total Relevanti

where Relevanti is the total number of relevant documents retrieved for the ith concern

and Total Relevanti is the total number of relevant documents that exists for the ith

concern. The value of RPQ lies between 0 and 1.

6. Precision: The model’s precision is the average of the per-query precision, for all the

queries:

Precision =
1

|Q|

|Q|∑
i=1

PPQi

The value of Precision lies between 0 and 1.
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7. Recall : The model’s recall is the average of the per-query recall, for all the queries:

Recall =
1

|Q|

|Q|∑
i=1

RPQi

The value of Recall lies between 0 and 1.

A.7 Results

A.7.1 Parameter Tuning

We tune the two parameters of our model — the term weight scaling parameter k1 and

the document normalization parameter b. Traditional wisdom is to set k1 = 1.2 and b = 0.75

however, since concern location is different from traditional text retrieval we did a linear

sweep of all values between [0, 2] for k1 and [0, 1] for b with a step-size of 0.1 selecting

k1 = 0.5 and b = 0.6 as optimal. The performance of IRFL using these parameter values is

slightly better than using default values. Figure A.5 shows the effect of tuning parameters

on the performance of IRFL measured in terms of the evaluation metrics.

We experimented with two stemmers: Krovetz and Porter supported by Indri and did not

observe any significant difference in the performance of IRFL . This is consistent with prior

work [67, 152]) that shows that no single stemmer is better for all kinds of queries. Hence

our model uses the Krovetz stemmer and the default stopword list provided with Indri.

Term Weighting Top 1 Top 5 Top 10 MAP MRR
k1 = 1000, b = 0 157 260 276 0.44 0.73
k1 = 1.2, b = 0.75 195 269 279 0.48 0.81
k1 = 0.5,b = 0.6 195 270 279 0.48 0.81

Figure A.5. Performance of IRFL after tuning model parameters for the Rhino dataset.
The optimal values of model parameters were found to be k1 = 0.5 and b = 0.6.

A.7.2 Retrieval Results

IRFL is able to locate the source code files for all the 480 concerns extracted from

the ECMA-262-v3 document. However, the evaluation is limited to the 279 concerns for
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which we have the correct mappings in the ground-truth dataset. Figure A.6 shows IRFL

’s Success@TopN (N ∈ {1, 5, 10, 10000}), MAP, MRR, Precision, and Recall for the 279

concerns of the ground-truth dataset. Note that 100% recall is impossible when limiting the

number of retrieved documents by N . Considering all the documents retrieved (Top 10000),

IRFL achieves a MAP score of 0.48 and MRR score of 0.81. The precision value of 45%

indicates that, on average, 55% of the source code files retrieved are not relevant to the given

concerns; however, the MRR score of 0.81 shows that relevant source code files are ranked

higher, which is encouraging. The recall value of 89% indicates that on average, 89% of the

the relevant source code files are retrieved for given concerns however, the low MAP score of

0.48 indicates that all relevant source code files are not ranked higher than irrelevant ones.

Considering top 10 ranked results, IRFL locates at least one relevant source code file for

all 279 concerns correctly and considering top 5 ranked results, IRFL locates at least one

relevant source code file for almost all (270) concerns. Considering top 1 ranked results show

that for 195 out of 279 concerns, the relevant source code file is ranked first.

Top N Success MAP MRR Precision Recall
Top 1 195 0.70 0.70 69.89 1.06
Top 5 270 0.73 0.80 54.05 4.09
Top 10 279 0.66 0.81 52.14 7.87
Top 10000 279 0.48 0.81 45.58 89.46

Figure A.6. IRFL ’s performance considering top N (N ∈ {1, 5, 10, 10000}) documents
retrieved per concern.

Although incorporating document structure in the retrieval model (Equation A.5) adds

some overhead to the retrieval process, total time taken to retrieve documents for all of the

480 concerns was ~10 seconds which is reasonable.

A.7.3 Failure Analysis

This section describes a qualitative analysis of the results described in section A.7.2.

Figure A.7 shows the distribution of PPQ and RPQ computed for each of the 279 concerns

of the ground-truth dataset considering all the retrieved results (top 10000). Note that
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PPQ and RPQ indicate the performance of the technique without the rank of the retrieved

documents. A PPQ score of ~45–50% for a concern indicates that around 50% of all the

documents retrieved for that concern are irrelevant documents however, a high MRR score

of 0.81 indicates that relevant documents are ranked higher. The RPQ score, as expected,

is high (> 85%) for most of the concerns; however, for certain concerns RPQ was found to

be quite low (9%).

Investigating the concerns for which the relevant documents retrieved were too low, we

found three types of scenarios where our proposed technique performs poorly.

The first type includes concerns for which IRFL couldn’t retrieve any results are the

ones that do not satisfy our assumption that common words exists between specifications

and source code files. For instance, section 11.8 describes the implementation of relational

operators e.g., a “Greater-than Operator” and the relevant source code e.g., Arguments.java

which validates the arguments used to perform any allowable operations, doesn’t contain

any keywords which also occur in the specification of individual operators. Such scenarios

can be handled using modern techniques that use semantics of the words.

The second type includes concerns that contain few words and refer to other concerns

for more details. This often happens in all types of concern sources such as specification

documents and bug reports. For instance section 15.3.5 of ECMA-262-v3 document states

that “In addition to the required internal properties, every function instance has a [[Call]]

property, a [[Construct]] property and a [[Scope]] property (see 8.6.2 and 13.2). The value of

the [[Class]] property is “Function”. where it refers to sections 8.6.2 and 13.2 that describe

more details. A possible way to address such cases is to dereference the sections while

preprocessing specification document to generate queries.

The third type includes the concerns that had very few words in their description. For

instance, section 7.7 of ECMA-262-v3 document describes the valid punctuators allowed in

the JavaScript language and the query corresponding to it contains only four unique words
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Figure A.7. Distribution of precision per query (PPQ) and recall per query (RPQ) consid-
ering all the documents retrieved for the 279 Rhino concerns of the ground-truth dataset.

“Punctuators”, “Syntax”, “Punctuator”, “one”, and “of”, and symbols { } ( ) [ ] . ; , > <,

etc. It is hard to retrieve relevant source code files for such concerns.

A.8 Threats to Validity

A.8.1 Threats to internal validity:

The results presented in this study rely on the ground-truth data provided by Eaddy et

al. [45], which involves manually annotating the Rhino source code with relevant concerns

from ECMA-262-v3. Any human-error made in annotation will affect the results presented

in this report.

A.8.2 Threats to external validity:

The proposed method is generalizable to any kind of Java-based software provided the

concerns from its specification can be represented in the form of generic XML-based template

we use to represent concerns (recall Section A.4).
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A.9 Conclusion and Future Work

We propose IRFL , a structural information retrieval based concern location technique

that uses program constructs, such as class and method names to accurately identify the

source code which is relevant to a given concern. Our technique uses BLUiR for pre-

processing and Indri — IR toolkit to perform the retrieval. We evaluate IRFL to identify

the relevant source code files in Rhino version 1.5R6 for the ECMA-262-v3 specifications.

Considering the top 10 retrieved results for each specification, IRFL achieves the mean

average precision (MAP) of 0.48 and the mean reciprocal rank (MRR) of 0.81.

In future, we plan to enhance IRFL by experimenting with more modern IR tech-

niques such as LDA (e.g., [47]) and machine-learning based approaches that utilize the

word-embeddings (e.g., [199]) to reduce the lexical gap between concerns and code which is

usually identified as a significant impediment to the traditional IR-based approaches. We

also intend to generalize our approach to incorporate the software written in other kinds

of programming languages and concerns from other kinds of specification documents. Fi-

nally, we intend to create standard benchmarks and evaluation metrics which can be used

for comparing different concern location techniques.
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