
Better Automatic Program Repair
by Using Bug Reports and Tests Together

Manish Motwani Yuriy Brun

https://github.com/LASER-UMASS/SBIR-ReplicationPackage

https://github.com/LASER-UMASS/SBIR-ReplicationPackage

Buggy Program

Test Suite

Automatic Program Repair (APR) Process

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Fault
Localization

Automatic Program Repair (APR) Process

Top-k Suspicious
Statements

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Fault
Localization

Patch
Generation

and Validation

Automatic Program Repair (APR) Process

Top-k Suspicious
Statements

Patched Program

Test Suite

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Patch passing
all the tests

Plausible Patch

Fault
Localization

Automatic Program Repair (APR) Process

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Repair Techniques Struggle to Patch Defects Correctly

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Repair Techniques Struggle to Patch Defects Correctly

Overfitted Patch

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Smith et al., Is the cure worse than the disease? Overfitting in automated program repair, ESEC/FSE, 2015
Long et al., An analysis of patch plausibility and correctness for generate-and-validate patch generation systems, ISSTA, 2015
Long et al., An analysis of the search spaces for generate and validate patch generation systems, ICSE, 2016
Le et al., Overfitting in semantics-based automated program repair, ICSE, 2018
Motwani et al. Quality of automated program repair on real-world defects, TSE, 2022
Alarcon et al., Would you fix this code for me? effects of repair source and commenting on trust in code repair, Systems, 2020

More than 50%
of the patches

overfit!

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

The Localization Error Problem in Automatic Program Repair

Overfitted Patch

More than 50%
of the patches

overfit!

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Afzal et al., SOSRepair: Expressive semantic search for real-world program repair, TSE, 2021
Yang et al., Evaluating the strategies of statement selection in automated program repair, ISSTA, 2018
Wen et al., An empirical analysis of the influence of fault space on search-based automated program repair, CoRR, 2017
Bieman et al., Fault localization for automated program repair: Effectiveness, performance, repair correctness, Software Quality Journal, 2017
Jiang et al., A manual inspection of defects4j bugs and its implications for automatic program repair, Science China Information Sciences, 2019
Liu et al., You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems, ICST, 2019

Imprecise
fault

localization

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Key Insight

Overfitted Patch

More than 50%
of the patches

overfit!

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Bug Report

Use bug
reports and

test suite

Imprecise
fault

localization

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Our Solution

Overfitted Patch

More than 50%
of the patches

overfit!

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Bug Report

Imprecise
fault

localization

The first unsupervised
statement-level bug-report-
based FL technique

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Our Solution

Overfitted Patch

More than 50%
of the patches

overfit!

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Bug Report

Imprecise
fault

localization

The first unsupervised
statement-level bug-report-
based FL technique

The first unsupervised approach
to combine the results of
multiple FL techniques

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Our Solution

Overfitted Patch

More than 50%
of the patches

overfit!

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Bug Report

Imprecise
fault

localization Combining Blues with an
existing SBFL technique using
RAFL approach

The first unsupervised
statement-level bug-report-
based FL technique

The first unsupervised approach
to combine the results of
multiple FL techniques

Identify ranked list
of suspicious
program
statements

Buggy Program

Test Suite

Fault
Localization

Our Solution

Overfitted Patch

More than 50%
of the patches

overfit!

Manual
inspection

Patch passing
all the tests

Plausible Patch

1. File X1: line Y1

2. File X2: line Y2

3. File X3: line Y3

…

t. File Xt: line Yt

...

k. File Xk: line Yk

Generate and
validate candidate
patches for each
statement in the
ranked list

Patch
Generation

and Validation

Top-k Suspicious
Statements

Patched Program

Test Suite

Bug Report

Imprecise
fault

localization Combining Blues with an
existing SBFL technique using
RAFL approach

The first unsupervised
statement-level bug-report-
based FL technique

The first unsupervised approach
to combine the results of
multiple FL techniques

First investigation of simultaneously using multiple
software artifacts to improve program repair.

Effect of Using SBIR on Repair Performance

SequenceR SimFixArja

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

395 defects from 6 real-world Java projects
available in Defects4J version 1.x

1. Liu et al., You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. ICST 2019.

Chart-12
Closure-78
Closure-86
Lang-10
Lang-20

Closure-86 Closure-68
Closure-92

SequenceR SimFixArja

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

Using SBIR enables APR tools
to correctly repair 7 new
defects that 14 existing
techniques1 couldn’t fix

395 defects from 6 real-world Java projects
available in Defects4J version 1.x

Effect of Using SBIR on Repair Performance

1. Liu et al., You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. ICST 2019.

Chart-12
Closure-78
Closure-86
Lang-10
Lang-20

Closure-86 Closure-68
Closure-92

Lang-7
Lang-10
Lang-59
Math-35

Closure-68
Closure-92
Closure-126

(Uses
Perfect FL)

SequenceR SimFixArja

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

Using SBIR enables APR tools
to correctly repair 7 new
defects that they couldn’t fix
earlier

Using SBIR enables APR tools
to correctly repair 7 new
defects that 14 existing
techniques1 couldn’t fix

395 defects from 6 real-world Java projects
available in Defects4J version 1.x

Effect of Using SBIR on Repair Performance

1. Liu et al., You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. ICST 2019.

Chart-12
Closure-78
Closure-86
Lang-10
Lang-20

Closure-86 Closure-68
Closure-92

Lang-7
Lang-10
Lang-59
Math-35

Closure-68
Closure-92
Closure-126

(Uses
Perfect FL)

SequenceR SimFixArja

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

Using SBIR enables APR tools
to correctly repair 7 new
defects that they couldn’t fix
earlier.

Using SBIR enables APR tools
to correctly repair 7 new
defects that 14 existing
techniques1 couldn’t fix

395 defects from 6 real-world Java projects
available in Defects4J version 1.x

SBIR enables repair tools to correctly patch many new defects
without modifying their patch generation algorithms.

Effect of Using SBIR on Repair Performance

Effect of Using SBIR on Repair Quality

689 single file edit defects from 17 real-world
Java projects available in Defects4J v2.0

SequenceR SimFixArja

FL sensitivity computed using approach described in: “Liu et al., A critical review on the evaluation of automated program repair systems. Journal of Systems and Software, 171:110817, 2021”

33%

20%

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

Effect of Using SBIR on Repair Quality

689 single file edit defects from 17 real-world
Java projects available in Defects4J v2.0

SequenceR SimFixArja

FL sensitivity computed using approach described in: “Liu et al., A critical review on the evaluation of automated program repair systems. Journal of Systems and Software, 171:110817, 2021”

33%

20%

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

SBIR significantly improves the quality of more FL-sensitive APR tools.

Effect of Using SBIR on Localization Error

689 single file edit defects from 17 real-world
Java projects available in Defects4J v2.0

SequenceR SimFixArja

Lower is better

localization error assessment

upper bound 36 24 32

of defects not correctly patched due to localization error

SBFL 15 14 2

Blues 21 20 19

SBIR 8 12 2

Effect of Using SBIR on Localization Error

689 single file edit defects from 17 real-world
Java projects available in Defects4J v2.0

SequenceR SimFixArja SequenceR SimFixArja

localization error assessment

upper bound 36 24 32

of defects not correctly patched due to localization error

SBFL 15 14 2

Blues 21 20 19

SBIR 8 12 2

Lower is better

SBIR lowers the localization error by providing repair tools
an earlier opportunity to patch actual buggy statements.

Blues: Unsupervised, Statement-Level FL Using Bug Reports

Bug report

Source files

ranked list of suspicious
program statements

[1] Saha et al., Improving bug localization using structured information retrieval, ASE 2013

BLUiR [1]

Step 1: Extract terms associated with Summary and
Description from bug report

summarysummary

descriptiondescription

Bug report
query

bug report

Step 2: Extract terms associated with Class, Method,
Identifier and Comment from source files

class

method

identifier

comment

Source file
document collection

Source files

Step 3: Execute IR model to rank suspicious files for
given query

BM25
Okapi

෍

𝑟∈𝑄

෍

𝑓∈𝐷

𝑆(𝑑𝑓 , 𝑞𝑟)

𝑟 : query representation
𝑓 : document field

summary

description

Bug report
query

class

method

identifier

comment

Source file
document collection

Execute IR model
eight times

Step 3: Execute IR model to rank suspicious files for
given query

defect
source

file
rank

suspiciousness
score

Ranked list of
suspicious
source files

Step 4: Extract 57 possible AST nodes from source files
and create a statement document collection

Ranked list of
suspicious
source files

Ranked list of
suspicious
source files

Step 4: Extract 57 possible AST nodes from source files
and create a statement document collection

FastDateParser.java

IfStatement node
line# 308

ConditionalExpression node
line# 308

line#
AST node#

statement
document collection

Step 4: Extract 57 possible AST nodes from source files
and create a statement document collection

Step 5: Execute IR model to rank suspicious statements
for given query

BM25
Okapi

𝑟 : query representation

෍

𝑟∈𝑄

𝑆(𝑑, 𝑞𝑟)

statement
document collection

summary

description

Bug report
query

Execute IR model
two times

defect

source
file

rank
suspiciousness

score

Ranked list of suspicious
statements

Line#
AST

node#

Step 5: Execute IR model to rank suspicious statements
for given query

Step 6: Combine scores of ranked files and statements

Ranked list of
suspicious statements

per ranked file

Ranked list of
suspicious source files

Parameters
(f, m, ScoreFn)

Ranker

Final ranked list of
suspicious statements

Higher is better Lower is better

Comparison of Blues With State-Of-The-Art and Baseline

171 Lang and Math defects in Defects4J v1.0

statement-level IRFL
technique used in
iFixR repair tool

(171 defects) hit@k EXAM

k = 1 25 50 100 all k = all

iFixR 26 74 95 106 135 0.048

Blues 11 79 97 108 151 0.034

The number of
defects localized
within the Top-k

ranked statements

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

Comparison of Blues With State-Of-The-Art and Baseline

Higher is better Lower is better

171 Lang and Math defects in Defects4J v1.0

statement-level IRFL
technique used in
iFixR repair tool

(171 defects) hit@k EXAM

k = 1 25 50 100 all k = all

iFixR 26 74 95 106 135 0.048

Blues 11 79 97 108 151 0.034

The number of
defects localized
within the Top-k

ranked statements

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

815 defects from 17 projects in Defects4J v2.0

Does not consider
suspicious file scores

(815 defects) hit@k EXAM

k = 1 25 50 100 all k = all

vanilla BLUiR 26 143 192 245 611 0.159

Blues 27 184 241 306 611 0.111

Lower is betterHigher is better

Comparison of Blues With State-Of-The-Art and Baseline

815 defects from 17 projects in Defects4J v2.0

Does not consider
suspicious file scores

Higher is better Lower is better

171 Lang and Math defects in Defects4J v1.0

statement-level IRFL
technique used in
iFixR repair tool

(171 defects) hit@k EXAM

k = 1 25 50 100 all k = all

iFixR 26 74 95 106 135 0.048

Blues 11 79 97 108 151 0.034

The number of
defects localized
within the Top-k

ranked statements

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

(815 defects) hit@k EXAM

k = 1 25 50 100 all k = all

vanilla BLUiR 26 143 192 245 611 0.159

Blues 27 184 241 306 611 0.111

Lower is betterHigher is better

For scenarios relevant to APR (k >=25), Blues consistently
outperforms the state-of-the-art and baseline.

Test Suite Bug report

Spectrum-based FL IR-based FL

How to Combine Multiple FL Techniques for APR?

Ochiai

Test Suite Bug report

Spectrum-based FL IR-based FL

RAFL: Rank-Aggregation-Based Fault Localization

Ochiai

Super list that is
as close as possible to

individual lists

𝑓(𝛿) = σ𝑖=1
𝑚 𝑤𝑖𝑑(𝛿, 𝐿𝑖)

Key Insight: Formulate Rank-Aggregation as an
Optimization Problem

…

L1

L2

Lm

𝛿

𝐿𝑖: i
th ordered list of

ranked suspicious
statements

Objective function
defined in terms of the

weighted sum of distances
between the combined list

and individual lists

𝛿: combined
ordered list of
length k ≤ |𝐿𝑖|

𝛿: combined
ordered list of
length k ≤ |𝐿𝑖|

𝛿: combined
ordered list of
length k ≤ |𝐿𝑖|

𝐿𝑖: i
th ordered list of

ranked suspicious
statements

𝑤𝑖: optional
importance weight
associated with 𝐿𝑖

𝑑: distance
function

𝑓(𝛿) = σ𝑖=1
𝑚 𝑤𝑖𝑑(𝛿, 𝐿𝑖)

…

L1

L2

Lm

𝛿

Objective function
defined in terms of the

weighted sum of distances
between the combined list

and individual lists

𝛿: combined
ordered list of
length k ≤ |𝐿𝑖|

𝛿: combined
ordered list of
length k ≤ |𝐿𝑖|

𝛿: combined
ordered list of
length k ≤ |𝐿𝑖|

𝑤𝑖: optional
importance weight
associated with 𝐿𝑖

𝑑: distance
function

𝛿∗ = argmin 𝑓(𝛿) = argmin ෍

𝑖=1

𝑚

𝑤𝑖𝑑(𝛿, 𝐿𝑖)

Goal: Find a combined
list (𝛿∗) whose sum of
distances from individual
lists is minimum

𝛿∗: ordered list of
length k ≤ |𝐿𝑖| that is as
close as possible to all 𝐿𝑖

𝐿𝑖: i
th ordered list of

ranked suspicious
statements

𝐿𝑖: i
th ordered list of

ranked suspicious
statements

RAFL: Rank-Aggregation-Based Fault Localization

Test Suite Bug report

Spectrum-based FL IR-based FL

SBIR: Combining SBFL With Blues Using RAFL

Ochiai

Implemented SBIR
(using CE, Spearman’s
footrule distance) to
combine Ochai and
Blues and produce a
combined list of top-

100 suspicious
statements.

Higher is better Lower is better

815 defects from 17 real-world Java
projects available in Defects4J v2.0

1. CombineFL (Zou et al., TSE, 2019); 2. NeuralBugLocator (Gupta et al., NeurIPS, 2019); 3. DeepFL (Li et al., ISSTA, 2019)

Performance of SBIR Compared to SBFL and Blues

(815 defects) hit@k EXAM

k = 1 25 50 100 k = 25 50 100

SBFL 88 408 475 549 0.287 0.240 0.220

Blues 27 184 241 306 0.332 0.300 0.270

SBIR mean 101 419 489 557 0.256 0.215 0.187

(10 seeds) stdev 7.60 5.01 5.40 4.22 0.006 0.006 0.005

cv 0.08 0.01 0.01 0.01 0.023 0.026 0.028

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

The number of
defects localized
within the Top-k

ranked statements

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’

results are tightly coupled

Higher is better Lower is better

815 defects from 17 real-world Java
projects available in Defects4J v2.0

1. CombineFL (Zou et al., TSE, 2019); 2. NeuralBugLocator (Gupta et al., NeurIPS, 2019); 3. DeepFL (Li et al., ISSTA, 2019)

SBIR outperforms SBFL and Blues corroborating existing research1,2,3

on combining FL techniques.

Performance of SBIR Compared to SBFL and Blues

(815 defects) hit@k EXAM

k = 1 25 50 100 k = 25 50 100

SBFL 88 408 475 549 0.287 0.240 0.220

Blues 27 184 241 306 0.332 0.300 0.270

SBIR mean 101 419 489 557 0.256 0.215 0.187

(10 seeds) stdev 7.60 5.01 5.40 4.22 0.006 0.006 0.005

cv 0.08 0.01 0.01 0.01 0.023 0.026 0.028

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

The number of
defects localized
within the Top-k

ranked statements

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’

results are tightly coupled

Performance of SBIR Compared to the State-Of-The-Art FL

Higher is better Lower is better

334 defects from 5 real-world Java
projects available in Defects4J v1.0

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

(334 defects) hit@k EXAM

family technique k = 1 25 50 100 k = 100

SBFL Ochiai 30 168 196 221 0.254

DStar 32 169 199 222 0.254

MBFL Metallaxis 40 154 175 195 0.238

MUSE 26 96 104 118 0.193

slicing slicing-union 21 87 100 111 0.462

slicing-intersection 18 71 81 91 0.481

slicing-frequency 21 86 100 112 0.458

stack trace stack trace 16 28 28 28 0.663

predicate switching predicate switching 9 24 24 24 0.662

SBIR (RAFL) mean 48 177 207 231 0.175

(10 seeds) stdev 4.31 4.16 2.92 2.32 0.006

cv 0.09 0.02 0.01 0.01 0.034

The number of
defects localized
within the Top-k

ranked statements

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’

results are tightly coupled

Performance of SBIR Compared to the State-Of-The-Art FL

Higher is better Lower is better

334 defects from 5 real-world Java
projects available in Defects4J v1.0

The fraction of ranked
statements that must be
inspected until finding a

buggy statement.

(334 defects) hit@k EXAM

family technique k = 1 25 50 100 k = 100

SBFL Ochiai 30 168 196 221 0.254

DStar 32 169 199 222 0.254

MBFL Metallaxis 40 154 175 195 0.238

MUSE 26 96 104 118 0.193

slicing slicing-union 21 87 100 111 0.462

slicing-intersection 18 71 81 91 0.481

slicing-frequency 21 86 100 112 0.458

stack trace stack trace 16 28 28 28 0.663

predicate switching predicate switching 9 24 24 24 0.662

SBIR (RAFL) mean 48 177 207 231 0.175

(10 seeds) stdev 4.31 4.16 2.92 2.32 0.006

cv 0.09 0.02 0.01 0.01 0.034

The number of
defects localized
within the Top-k

ranked statements

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’

results are tightly coupled

SBIR outperforms nine state-of-the-art FL techniques by
localizing more defects and ranking buggy statements higher.

Performance of SBIR Compared to the Supervised
Combining Method

1. CombineFL (Zou et al., TSE, 2019); 2. Fluccs (Sohn et al., ISSTA, 2017); 3. Trapt (Li et al., OOPSLA, 2017); 4. Savant (Le et al., OOPSLA, 2016);

Higher is better Lower is better

815 defects from 17 real-world Java
projects available in Defects4J v2.0

(815 defects) Einspect@k EXAMinspect

technique k = 1 25 50 100 k = 100

SBIR(RankSVM) 50 270 328 396 0.236

SBIR (RAFL) mean 101 419 489 557 0.187

(10 seeds) stdev 7.60 5.01 5.40 4.22 0.005

cv 0.08 0.01 0.01 0.01 0.027

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’

results are tightly coupled

The number of
defects localized
within the Top-k

ranked statements

The fraction of
ranked statements

that must be
inspected until
finding a buggy

statement.

Performance of SBIR Compared to the Supervised
Combining Method

1. CombineFL (Zou et al., TSE, 2019); 2. Fluccs (Sohn et al., ISSTA, 2017); 3. Trapt (Li et al., OOPSLA, 2017); 4. Savant (Le et al., OOPSLA, 2016);

Higher is better Lower is better

815 defects from 17 real-world Java
projects available in Defects4J v2.0

(815 defects) Einspect@k EXAMinspect

technique k = 1 25 50 100 k = 100

SBIR(RankSVM) 50 270 328 396 0.236

SBIR (RAFL) mean 101 419 489 557 0.187

(10 seeds) stdev 7.60 5.01 5.40 4.22 0.005

cv 0.08 0.01 0.01 0.01 0.027

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’

results are tightly coupled

The number of
defects localized
within the Top-k

ranked statements

The fraction of
ranked statements

that must be
inspected until
finding a buggy

statement.

SBIR using unsupervised RAFL outperforms SBIR using
supervised RankSVM, which is used in many state-of-the-art
combining FL techniques1,2,3,4.

1. Liu et al., You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. ICST 2019.

Chart-12
Closure-78
Closure-86
Lang-10
Lang-20

Closure-86 Closure-68
Closure-92

Lang-7
Lang-10
Lang-59
Math-35

Closure-68
Closure-92
Closure-126

(Uses
Perfect FL)

SequenceR SimFixArja

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

Using SBIR enables APR tools
to correctly repair 7 new
defects that they couldn’t fix
earlier

Using SBIR enables APR tools
to correctly repair 7 new
defects that 14 existing
techniques1 couldn’t fix

395 defects from 6 real-world Java projects
available in Defects4J version < 2.0

Effect of Using SBIR on Repair Performance

SBIR enables repair tools to correctly patch many new defects
without modifying their patch generation algorithms.

Effect of Using SBIR on Repair Quality

689 single file edit defects from 17 real-world
Java projects available in Defects4J v2.0

SequenceR SimFixArja

FL sensitivity computed using approach described in: “Liu et al., A critical review on the evaluation of automated program repair systems. Journal of Systems and Software, 171:110817, 2021”

33%

12%

Heuristics-based
repair technique/
High FL sensitivity

Learning-based
repair technique/
Med FL sensitivity

Template-based
repair technique/
Low FL-sensitivity

SBIR significantly improves the quality of more FL-sensitive APR tools.

Effect of Using SBIR on Localization Error

689 single file edit defects from 17 real-world
Java projects available in Defects4J v2.0

SequenceR SimFixArja SequenceR SimFixArja

localization error assessment

upper bound 36 24 32

of defects not correctly patched due to localization error

SBFL 15 14 2

Blues 21 20 19

SBIR 8 12 2

Lower is better

SBIR lowers the localization error by providing repair tools
an earlier opportunity to patch actual buggy statements.

Contributions

https://github.com/LASER-UMASS/Blues

scan me for paper scan me for artifact

https://github.com/LASER-UMASS/Blues

Contributions

https://github.com/LASER-UMASS/Blues https://github.com/LASER-UMASS/RAFL https://github.com/LASER-UMASS/SBIR-
ReplicationPackage

scan me for paper scan me for artifact

https://github.com/LASER-UMASS/Blues
https://github.com/LASER-UMASS/RAFL
https://github.com/LASER-UMASS/SBIR-ReplicationPackage
https://github.com/LASER-UMASS/SBIR-ReplicationPackage

Contributions

https://github.com/LASER-UMASS/Blues https://github.com/LASER-UMASS/RAFL https://github.com/LASER-UMASS/SBIR-
ReplicationPackage

https://manishmotwani3.github.io/

scan me for paper scan me for artifact

https://github.com/LASER-UMASS/Blues
https://github.com/LASER-UMASS/RAFL
https://github.com/LASER-UMASS/SBIR-ReplicationPackage
https://github.com/LASER-UMASS/SBIR-ReplicationPackage
https://manishmotwani3.github.io/

	Slide 1: Better Automatic Program Repair by Using Bug Reports and Tests Together
	Slide 2: Automatic Program Repair (APR) Process
	Slide 3: Automatic Program Repair (APR) Process
	Slide 4: Automatic Program Repair (APR) Process
	Slide 5: Automatic Program Repair (APR) Process
	Slide 6: Repair Techniques Struggle to Patch Defects Correctly
	Slide 7: Repair Techniques Struggle to Patch Defects Correctly
	Slide 8: The Localization Error Problem in Automatic Program Repair
	Slide 9: Key Insight
	Slide 10: Our Solution
	Slide 11: Our Solution
	Slide 12: Our Solution
	Slide 13: Our Solution
	Slide 14: Effect of Using SBIR on Repair Performance
	Slide 15: Effect of Using SBIR on Repair Performance
	Slide 16: Effect of Using SBIR on Repair Performance
	Slide 17: Effect of Using SBIR on Repair Performance
	Slide 18: Effect of Using SBIR on Repair Quality
	Slide 19: Effect of Using SBIR on Repair Quality
	Slide 20: Effect of Using SBIR on Localization Error
	Slide 21: Effect of Using SBIR on Localization Error
	Slide 22: Blues: Unsupervised, Statement-Level FL Using Bug Reports
	Slide 23: Step 1: Extract terms associated with Summary and Description from bug report
	Slide 24: Step 2: Extract terms associated with Class, Method, Identifier and Comment from source files
	Slide 25: Step 3: Execute IR model to rank suspicious files for given query
	Slide 26: Step 3: Execute IR model to rank suspicious files for given query
	Slide 27: Step 4: Extract 57 possible AST nodes from source files and create a statement document collection
	Slide 28: Step 4: Extract 57 possible AST nodes from source files and create a statement document collection
	Slide 29: Step 4: Extract 57 possible AST nodes from source files and create a statement document collection
	Slide 30: Step 5: Execute IR model to rank suspicious statements for given query
	Slide 31: Step 5: Execute IR model to rank suspicious statements for given query
	Slide 32: Step 6: Combine scores of ranked files and statements
	Slide 33: Comparison of Blues With State-Of-The-Art and Baseline
	Slide 34: Comparison of Blues With State-Of-The-Art and Baseline
	Slide 35: Comparison of Blues With State-Of-The-Art and Baseline
	Slide 36: How to Combine Multiple FL Techniques for APR?
	Slide 37: RAFL: Rank-Aggregation-Based Fault Localization
	Slide 38: Key Insight: Formulate Rank-Aggregation as an Optimization Problem
	Slide 39: RAFL: Rank-Aggregation-Based Fault Localization
	Slide 40: SBIR: Combining SBFL With Blues Using RAFL
	Slide 41: Performance of SBIR Compared to SBFL and Blues
	Slide 42: Performance of SBIR Compared to SBFL and Blues
	Slide 43: Performance of SBIR Compared to the State-Of-The-Art FL
	Slide 44: Performance of SBIR Compared to the State-Of-The-Art FL
	Slide 45: Performance of SBIR Compared to the Supervised Combining Method
	Slide 46: Performance of SBIR Compared to the Supervised Combining Method
	Slide 47: Effect of Using SBIR on Repair Performance
	Slide 48: Effect of Using SBIR on Repair Quality
	Slide 49: Effect of Using SBIR on Localization Error
	Slide 50: Contributions
	Slide 51: Contributions
	Slide 52: Contributions

