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SBIR enables repair tools to correctly patch many new defects 
without modifying their patch generation algorithms.
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SBIR significantly improves the quality of more FL-sensitive APR tools.
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Effect of Using SBIR on Localization Error

689 single file edit defects from 17 real-world 
Java projects available in Defects4J v2.0

SequenceR SimFixArja SequenceR SimFixArja

localization error assessment

upper bound 36 24 32

# of defects  not correctly patched due to localization error

SBFL 15 14 2

Blues 21 20 19

SBIR 8 12 2

Lower is better

SBIR lowers the localization error by providing repair tools 
an earlier opportunity to patch actual buggy statements.
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[1] Saha et al., Improving bug localization using structured information retrieval, ASE 2013

BLUiR [1]
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FastDateParser.java
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line# 308

ConditionalExpression node 
line# 308
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AST node#

statement
document collection

Step 4: Extract 57 possible AST nodes from source files 
and create a statement document collection 
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Comparison of Blues With State-Of-The-Art and Baseline

815 defects from 17 projects in Defects4J v2.0

Does not consider 
suspicious file scores

Higher is better Lower is better

171 Lang and Math defects in Defects4J v1.0

statement-level IRFL 
technique used in 
iFixR repair tool

(171 defects) hit@k EXAM

k = 1 25 50 100 all k = all

iFixR 26 74 95 106 135 0.048

Blues 11 79 97 108 151 0.034

The number of 
defects localized 
within the Top-k

ranked statements

The fraction of ranked 
statements that must be 
inspected until finding a 

buggy statement.

(815 defects) hit@k EXAM

k = 1 25 50 100 all k = all

vanilla BLUiR 26 143 192 245 611 0.159

Blues 27 184 241 306 611 0.111

Lower is betterHigher is better

For scenarios relevant to APR (k >=25), Blues consistently 
outperforms the state-of-the-art and baseline.
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RAFL: Rank-Aggregation-Based Fault Localization
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statements that must be 
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Coefficient of variation

< 0.1 means 10 seeds’ 

results are tightly coupled 
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1. CombineFL (Zou et al., TSE, 2019); 2. NeuralBugLocator (Gupta et al., NeurIPS, 2019); 3. DeepFL (Li et al., ISSTA, 2019)

SBIR outperforms SBFL and Blues corroborating existing research1,2,3

on combining FL techniques.

Performance of SBIR Compared to SBFL and Blues
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Performance of SBIR Compared to the State-Of-The-Art FL
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334 defects from 5 real-world Java 
projects available in Defects4J v1.0
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family                                                    technique k = 1 25 50 100 k = 100

SBFL                                                          Ochiai 30 168 196 221 0.254

DStar 32 169 199 222 0.254

MBFL                                                   Metallaxis 40 154 175 195 0.238

MUSE 26 96 104 118 0.193

slicing                                              slicing-union 21 87 100 111 0.462

slicing-intersection 18 71 81 91 0.481

slicing-frequency 21 86 100 112 0.458

stack trace                                             stack trace 16 28 28 28 0.663

predicate switching                predicate switching 9 24 24 24 0.662

SBIR (RAFL) mean 48 177 207 231 0.175

(10 seeds)                                                      stdev 4.31 4.16 2.92 2.32 0.006

cv 0.09 0.02 0.01 0.01 0.034

The number of 
defects localized 
within the Top-k

ranked statements

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’ 

results are tightly coupled 



Performance of SBIR Compared to the State-Of-The-Art FL

Higher is better Lower is better

334 defects from 5 real-world Java 
projects available in Defects4J v1.0

The fraction of ranked 
statements that must be 
inspected until finding a 

buggy statement.

(334 defects) hit@k EXAM

family                                                    technique k = 1 25 50 100 k = 100

SBFL                                                          Ochiai 30 168 196 221 0.254

DStar 32 169 199 222 0.254

MBFL                                                   Metallaxis 40 154 175 195 0.238

MUSE 26 96 104 118 0.193

slicing                                              slicing-union 21 87 100 111 0.462

slicing-intersection 18 71 81 91 0.481

slicing-frequency 21 86 100 112 0.458

stack trace                                             stack trace 16 28 28 28 0.663

predicate switching                predicate switching 9 24 24 24 0.662

SBIR (RAFL) mean 48 177 207 231 0.175

(10 seeds)                                                      stdev 4.31 4.16 2.92 2.32 0.006

cv 0.09 0.02 0.01 0.01 0.034

The number of 
defects localized 
within the Top-k

ranked statements

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’ 

results are tightly coupled 

SBIR outperforms nine state-of-the-art FL techniques by 
localizing more defects and ranking buggy statements higher.



Performance of SBIR Compared to the Supervised 
Combining Method

1. CombineFL (Zou et al., TSE, 2019); 2. Fluccs (Sohn et al., ISSTA, 2017); 3. Trapt (Li et al., OOPSLA, 2017); 4. Savant (Le et al., OOPSLA, 2016); 
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projects available in Defects4J v2.0

(815 defects) Einspect@k EXAMinspect
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(10 seeds)                      stdev 7.60 5.01 5.40 4.22 0.005

cv 0.08 0.01 0.01 0.01 0.027

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’ 

results are tightly coupled 

The number of 
defects localized 
within the Top-k

ranked statements

The fraction of 
ranked statements 

that must be 
inspected until 
finding a buggy 

statement.



Performance of SBIR Compared to the Supervised 
Combining Method

1. CombineFL (Zou et al., TSE, 2019); 2. Fluccs (Sohn et al., ISSTA, 2017); 3. Trapt (Li et al., OOPSLA, 2017); 4. Savant (Le et al., OOPSLA, 2016); 

Higher is better Lower is better

815 defects from 17 real-world Java 
projects available in Defects4J v2.0

(815 defects) Einspect@k EXAMinspect

technique k = 1 25 50 100 k = 100

SBIR(RankSVM) 50 270 328 396 0.236

SBIR (RAFL) mean 101 419 489 557 0.187

(10 seeds)                      stdev 7.60 5.01 5.40 4.22 0.005

cv 0.08 0.01 0.01 0.01 0.027

cv =
stdev

mean

Coefficient of variation

< 0.1 means 10 seeds’ 

results are tightly coupled 

The number of 
defects localized 
within the Top-k

ranked statements

The fraction of 
ranked statements 

that must be 
inspected until 
finding a buggy 

statement.

SBIR using unsupervised RAFL outperforms SBIR using 
supervised RankSVM, which is used in many state-of-the-art 
combining FL techniques1,2,3,4.



1. Liu et al., You cannot fix what you cannot find! an investigation of fault localization bias in benchmarking automated program repair systems. ICST 2019.
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Closure-92

Lang-7
Lang-10
Lang-59
Math-35

Closure-68
Closure-92
Closure-126

(Uses 
Perfect FL)

SequenceR SimFixArja

Heuristics-based 
repair technique/ 
High FL sensitivity 

Learning-based 
repair technique/ 
Med FL sensitivity

Template-based 
repair technique/ 
Low FL-sensitivity

Using SBIR enables APR tools 
to correctly repair 7 new 
defects that they couldn’t fix 
earlier

Using SBIR enables APR tools 
to correctly repair 7 new 
defects that 14 existing 
techniques1 couldn’t fix

395 defects from 6 real-world Java projects 
available in Defects4J version < 2.0

Effect of Using SBIR on Repair Performance

SBIR enables repair tools to correctly patch many new defects 
without modifying their patch generation algorithms.



Effect of Using SBIR on Repair Quality

689 single file edit defects from 17 real-world 
Java projects available in Defects4J v2.0

SequenceR SimFixArja

FL sensitivity computed using approach described in: “Liu et al., A critical review on the evaluation of automated program repair systems. Journal of Systems and Software, 171:110817, 2021”

33%

12%

Heuristics-based 
repair technique/ 
High FL sensitivity 

Learning-based 
repair technique/ 
Med FL sensitivity

Template-based 
repair technique/ 
Low FL-sensitivity

SBIR significantly improves the quality of more FL-sensitive APR tools.



Effect of Using SBIR on Localization Error

689 single file edit defects from 17 real-world 
Java projects available in Defects4J v2.0

SequenceR SimFixArja SequenceR SimFixArja

localization error assessment

upper bound 36 24 32

# of defects  not correctly patched due to localization error

SBFL 15 14 2

Blues 21 20 19

SBIR 8 12 2

Lower is better

SBIR lowers the localization error by providing repair tools 
an earlier opportunity to patch actual buggy statements.
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